Jump to content
Sign in to follow this  



Many new technologies are maturing every year and for motorcyclists, one big change coming is the way we power our bikes…because there’s a new option when picking batteries and it’s called Lithium-iron phosphate.


In this article, we compare & contrast the key differences between the standard, "tried and true" lead acid battery and newer Lithium-iron phosphate units. Hopefully we'll help you answer the question of what's the right battery for your needs and budget. Maybe you already know and we'll just confirm this or possibly challenge some conclusions? :thinking:


Click on to the next page to see what we learned...




Next page: How Do They Work?




We are discussing two types of batteries here, Lead Acid and Lithium-iron phosphate (specifically the Shorai LFX Lithium-iron Battery Series), so let’s take a look at how each one works:




Italian physicist Count Alessandro Volta (where the term “Volt” comes from) first created a simple battery from metal plates and brine-soaked cardboard or paper in 1799…and the basic technology hasn’t strayed too far from that original design.


Lead Acid batteries are now manufactured with a hard plastic shell containing small compartments that hold both conductive plates (positive and negative) as well as acid (electrolyte) normally in groups of six. Sometimes these have external packages of electrolyte solution that you add and then charge the battery and some are sealed with the solution already installed.


Simply put, these lead plates are coated with either lead calcium (positive plates) or lead antimony (negative plates) which reacts with the electrolyte solution (normally sulfuric acid) in what’s known as an “electro-chemical reaction” that causes the plates to create electrical energy.




Lithium-iron phosphate batteries are also manufactured with a plastic shell, but inside it’s quite different than the Lead Acid type. Inside the case, they contain both positive and negative electrodes as well as electrolyte, but the electrolyte normally a non-aqueous chemicals like ethylene carbonates and various lithium salts.


The electrodes are made from different materials. The positive electrodes are generally made from layered oxide or phosphate, while the negative electrodes are generally made from graphite.


Also inside you’ll find a separator which is a sheet of very thin micro perforated plastic and it splits the electrodes while allowing ions to pass through. When this battery type charges, Lithium-ions move through the electrolyte from positive electrode to the negative electrode and during discharge this process is basically reversed.


Next page: How Long Do They Last?







Lead Acid battery life differs due to environmental elements including excessive heat and humidity. Battery industry pundits claim that a lead acid motorcycle battery can last five years if cared for properly and in ideal environmental conditions, but that’s not the real world. With lead acid batteries, letting them lose their charge fully can cause harmful sulfation and the battery may not fully recover.


In our experience, if you are using your motorcycle three to four times per week nine months out of the year, keeping it fully charged and you keep it on a battery tender device in the off-season, you should see battery life of two to three years. Lead Acid batteries favor colder, dryer climates, so riders in areas with this type of weather may see even longer battery lives.




According to Shorai, their Lithium-iron phosphate batteries do not sulfate while sitting and do not suffer the chemical degradation (sulfation) that is common with lead acid batteries. Conditions that will shorten the Lithium-ion phosphate battery life include batteries sized too small for load conditions/wrong bike and failure to maintain the proper voltage when the battery is not being used.


Lithium-iron phosphate batteries can outperform and outlast traditional lead acid batteries under lab test conditions, with some examples showing the LFX Lithium-iron phosphate battery can provide more than 2000 cycles during 80% DOD (depth of discharge) testing, as opposed to 500-800 cycles for lead acid batteries under the same conditions.


So in theory, the LFX Lithium-iron phosphate battery should last from two to four times longer than the lead acid battery.


Next page: What Is The Required Maintenance?







Lead acid batteries don’t like heat, humidity or to be discharged fully…so don’t let them go dead while sitting in your bike in that hot garage.


In fact, letting the voltage drop below 12.4 volts can result in lower battery life in general, so if you aren’t riding, make sure to use a “smart” trickle charger like the units from Battery Tender.


We’ve seen riders “top up” their batteries with spare electrolyte or distilled water. This can help with efficiency and maintaining maximum output but over time using distilled water will just dilute the whole mixture and thereby lose its effectiveness.


Tip: For long term storage of lead acid batteries, we remove the battery from the bike and put it in a cool, dry section of our workshop attached to the battery tending device.




You can’t “top up” a Lithium-iron phosphate battery with electrolyte so it’s important to monitor the voltage and charge as necessary to keep the resting voltage above 13.1 volts.


While standard lead-acid chargers can be used with most Lithium-iron Phosphate batteries when needed, most manufacturers make a charger that is specifically designed to charge, store and maintain the specific product type used.


Tip: When storing a Lithium-iron phosphate battery, it should be disconnected from the vehicle, fully charged to ~14.4 volts and then it can sit for up to 1 year before recharging. Storing in cool, dry environments is preferred for lithium batteries.
Next Page: Weight Savings and Performance





Lithium-iron phosphate batteries have shown the ability to operate at a higher voltage range than the typical lead acid battery during cranking, resulting in quicker start times.


Some Lithium-iron phosphate batteries can be up to 80 percent lighter than their lead acid equivalents. This saves an average of 2-3 lbs. for dirt bikes, 6-8 lbs. for street bikes and 10-20 lbs for touring and cruiser bikes.


The difference in weight was even larger for our Honda XR650L as the recommended Shorai LFX19A4-BS12 battery (2.31lbs) is lighter than the lead-acid Yuasa YTZX9-BS (5.4lbs) specified for the bike by a whopping 3.1lbs…that’s huge.


We all know that weight savings is the Holy Grail when it comes to high performance motorcycles and many riders spend thousands on lightweight components like titanium fasteners and carbon fiber bits for their bikes, but it takes a lot of expensive lightweight parts to add up to the weight savings stated when using a Lithium-iron phosphate battery and we consider this to be one of the best (and most inexpensive) ways to reduce weight on your motorcycle.


These Lithium-iron phosphate batteries are surprisingly much smaller than their lead acid equivalents, and this caused some dismay when they were first released and the battery was loose in the battery tray/carriers on some bikes…but now many manufacturers include some adhesive-backed foam padding to take up the excess room.




Next Page: Environmental And Temperature Considerations





Typical lead acid batteries quote their normal operating range as 14 -140 F while Lithium-iron phosphate units quote this range as 20 -140 F, so not a huge difference there, but what happens when temperatures drop below the recommended range?




When a lead acid battery is used below 14 degrees F, the battery’s ability to discharge current will decrease because low temperatures slow down the chemical reaction inside. Lower cranking amperage means less power to turn over your engine, which can be even harder to crank than in normal temperatures, due to thicker oil viscosity depending on oil type and grade used.


This phenomenon can be compensated with somewhat by using a battery with the highest CCA (Cold Cranking Amps) and AHr (Ampere-Hour) rating correct for your application, because under actual cranking conditions they will deliver considerably less than specified capacity.


Why? Because lead acid begin sulfating when only a small percentage of the capacity has been used, and their internal resistance rises as they are discharged, the actual capacity which can be used may be as little as 20% of the printed rating.




At lower temperatures the output of the Lithium-iron phosphate battery is also adversely affected and it’s recommended that battery is fully charged after storage to improve performance in cold weather.


The good news is that Lithium-iron phosphate battery cells are capable of 80% discharge without damage and while retaining higher cranking output. As such, the actual usable capacity can be on par with 18AHr-rated lead acid batteries while providing higher cranking performance and a reduction in weight.


There is a recommended procedure that can help compensate for the cold weather reduction in performance when using a Lithium-iron phosphate battery:


Turn on your headlight because it helps output for the battery to flow some current before cranking in cold weather. The suggested headlight-on time before cranking depends on the temperature. If starting at 40F/5C, 30 seconds will help wake the battery and increase cranking performance. If at 0F/-17C, leave the lights on for 4-5 minutes before cranking and thee result will be a better first crank and longer battery life.


If the engine fails to start on first crank, that first crank has warmed the battery, and the second attempt will be much stronger. Other accessories that can be turned on before cranking can also be used for this purpose, such as heated gear, GPS, etc.


Next Page: How Much Do They Cost?





We priced two batteries for our 2015 Honda XR650L - the Yuasa lead acid unit with 135 CCA was $92, while the Lithium-iron phosphate battery with 285 CCA’s was $189, so you’re paying for the higher cranking performance (almost double the CCA’s) as well as much lighter weight.



Next Page: What Did We Conclude?




Although Lithium-iron phosphate battery technology is fairly new, it has significant benefits and few drawbacks at this point in its development.


Advantages of the Lithium-iron phosphate batteries include dramatically lighter weight, higher cranking amperage ratings per size of the unit, intelligent charging mechanisms and much less chance of corrosive material spillage.


The one disadvantage in this author’s mind would be the increased cost.


In conclusion, yes, we believe that Lithium-iron Phosphate battery technology is, except for cost considerations, “better” than the standard lead-acid battery and will be the Grim Reaper that makes lead-acid batteries obsolete as we move forward in time.


Have a burning question :confused: or need to inform us that we've missed something? :prof: Hit us up in the comment section below. We want to hear your thoughts & experiences on this topic!

Sign in to follow this  

User Feedback

Recommended Comments

The shorai I put in my 08 cbr1000rr simply would not start the bike on colder winter days. No amount of running my electric jacket to warm up the battery would get it to the point that it had enough juice. I ended up putting that battery in a ttr125e, where it works ok.

Share this comment

Link to comment
Share on other sites

Yes cold weather, and their procedure of stimulating the battery with load never worked as stated. Also if the thing ever has an "event", like leaving something on over night or a fan killing it in low rpm technical riding. It'll never be the same. Even after using a correct smart charger. Had a work account with Battery and Bulbs retail store that sold them (shorai), they quit carrying them due to returns. The ratio of problem battery's right out of the box was about 1:6 to 10 at best, this was for stationary applications , not bike's.

Share this comment

Link to comment
Share on other sites

I'd be concerned about higher cranking voltage, starter motors have been designed to work with the lower cranking voltage of a lead acid battery. If you have an engine that is difficult to start you increase the danger of a motor burn out with a higher voltage....

Share this comment

Link to comment
Share on other sites

Tried the lithium iron in my BMW f650. The entire electrical system was affected by the battery's internal charging circuit. Voltage levels were all over the place. Horn sounded like a dead frog, turn signals went spastic. Replaced the regulator and stator. No difference. Finally, the lithium died taking out the regulator also. Replaced with lead acid, all was restored. The technology is premature. Need better internal circuitry.

I agree,is a new technology,needs more research

Share this comment

Link to comment
Share on other sites

Hmm. Going to do further reading but as of now I think I will not put this in my CRF 250L. I ride it off-road. I crash it. I drop it. It gets wet. It hits rocks. i ride year round. Getting stuck in the forest in winter would be a bummer.

Share this comment

Link to comment
Share on other sites
On 8/28/2016 at 6:13 PM, giotto said:

I wish this article would address one additional point:  The environmental impact of each of these batteries.  I really, honestly don't know how bad a lead acid battery is for the environment.  I know they can be recycled, and almost any shop in my area is happy to take a spent battery for free, but the Lith-ion batteries, I dunno?  Are they harmless when their useful life is over, or do they do freaky things to the environment if you just discard them?  Where do I take them to recycle them?  I have grandchildren; I want to leave them a cleaner world than I inherited.

Lithium Iron Phosphate batteries are enviromentally friendly unlike lead acid, they're pretty much 100% recycleable 

  • Like 1

Share this comment

Link to comment
Share on other sites
On 9/6/2016 at 5:34 PM, Triangles said:

For those in the north like me who ride year round the cold is an issue with lithium batteries.  They don't work real well below freezing.  here's my experience on a typicall winter day.  https://www.youtube.com/watch?v=oHSbL-cBUFM  and for giggles here's what happens at -13F  https://www.youtube.com/watch?v=PPXG5_LQcYM

Actually they do work better in cold temps as they have higher cold cranking amps which means they will crank longer than a lead acid battery. The caveat is that a Lithium battery must be energized to warm up. If your bike has been sitting in sub zero temperatures for an exteneded time it may be benificial to do a warm up on it. If your bike lights turn on when the key is turned on it's easy. Just turn it on with the lights on, wait about 30 seconds and it'll be ready. Sometimes in extreme conditions you'll have to wait a little longer. If you don't have any electrical components that draw off the battery when you turn on the ignition, turn the key on, hit the starter for a couple of seconds and wait for 30 seconds. Usually that will do it. If after 30 seconds its still cranking slowly, wait another 30 with the ignition on. 

  • Helpful 1

Share this comment

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Add a comment...

×   Pasted as rich text.   Restore formatting

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.


  • Similar Content

    • By pmillsap66
      Hey everyone I have seen y'all help out poor souls time after time with wonderful advice and finally I'm asking for a xr Jedi. I bought a 1986 xr250r, not running. The kid said it ran a few weeks ago then it stopped.... yea.. anyways he ran the sucker with little amount of oil and dryed the cam. Looked like some one thought to was corn on the cob. Replaced that and inspected the rest of the top end. Everything else is tolerable and works. I couldn't get spark so I replaced wiring harness with a used one looks better than the one I had. Also replaced the ignition coil, the CDI, and the third little box that is next to the CDI, lost for the name, still won't start but I have spark. It's not bright but it's there every time. I've cleaned and set the carb back to factory recommendations. Anything else I can do?
    • By jimbob394
      Hi everyone,

      A few months ago I was working on installing a new headlight and fairing. I also changed the front blinkers to smaller ones which only used two wires, instead of the 3 factory wires. I zipped tied some of the new wires from the headlight to existing factory wires and had everything wired up correctly to the battery.

      Then I tried to start the bike to test the headlight, however, when I turned it to the 'ON' position, the instrument cluster did not light up and the bike does not start or crank at all. The fuel pump runs and the blinkers work, but the bike does not function otherwise.

      I know about checking the wiring harness/connector behind the radiator; I had checked that already and it seemed fine and in tact, however, I will check it again just to make sure. I also removed all zip ties so there's no pulling on factory wires, but nothing has changed.

      I inspected the wires leading into the instrument cluster and they all seem to be fine. I am not sure what is causing the issue, whether it was a wiring harness being pulled or a wire causing an issue from the blinkers or what. The battery has a full charge as well, so it wasn't dead.

      Any ideas from anyone or steps to take to diagnose this issue?

    • By rockpenguin
      Howdy All!  Hopefully someone can point me in the right direction.  I have a '18 701 Enduro and lately the speedometer hasn't been working.  Stuck at 0.  Sometimes it will work, sometimes not.  Hence the odo is not working, wither.  Clock and other portions of LCD display are fine.  So I got an OBD reader and hooked it up to see if the speed would register through that, but still no joy.  Seeing the RPMs is admittedly pretty cool, though.  Anyhoo, should I be looking at the sensor on the front (or rear) wheel or is it more likely the display unit that might be bad?  I am leaning towards the sensor given that the speed also doesn't show via the OBD, but this is my first bike with OBD, ABS, etc. so I'm not sure where to troubleshoot.  The sensors on the wheels appear to be sealed units so not sure if there is any troubleshooting that can be done.  Cables look good, no pinching or cuts.  Thanks for any advice!
    • By timbojones
      Hi all,
      I'm in the middle of converting my dirt model DR350 so I can run a normal 12v DC system.
      I've finished everything with a diagram (below) but I'm having a few issues. When the bike is running and under no load it's showing up at 21v which is obviously way too high. Once the tail light is plugged in it drops to a normal voltage of about 13v. Once the tail light is running, the horn only just works and the tail light dims massively and reads about 5v, I presume this is due to the DR dirt model only putting out 90W so I'll be upgrading everything to LED.
      The obvious issue here is the voltages. Is this due to the regulator/rectifier failing? It's brand new. Link to the one I bought is here: https://www.ebay.co.uk/itm/4-Wire-Full-Wave-Motorcycle-Regulator-Rectifier-12V-DC-Bike-Quad-Scooter-bs02/264375956544?hash=item3d8e08f440:g:sQEAAOSwwGNdEdy8
      So, you're probably wondering what I've done wrong with the wiring. The original diagram can be found here:

      My modified wiring diagram can be found here:

      Any help on what I've done wrong would be massively appreciated!
    • By Parker Smith
      So I purchased the bike in March of 2018 and haven’t had any issues until just recently. I was washing my bike one day and I go to start it when I was done and there’s no power. So I checked the main fuse under the seat and sure enough, it was burnt. So I used the spare fuse and it was fine. I rode it a couple time after that. Then, I was out riding again it just all of the sudden died while it was at idle and didn’t have any power after. So I got it home, cleaned every single connector that I could find with contact cleaner and even put dielectric grease on all plugs. Still keeps blowing the fuse. Any suggestions? 
  • Create New...