Kevin from Wiseco

Insiders
  • Content count

    26
  • Joined

  • Last visited

Community Reputation

86 Excellent

2 Followers

About Kevin from Wiseco

  • Rank
    TT Member

Profile Information

  • Gender
    Male
  • Location
    Ohio
  1. Thanks Bryan! It's been over 75 years of investment. There's no replacement for experience! Thanks, DHix!
  2. When it comes to overall strength, there's no beating a forged piston. But what is the process that yields the toughest parts in the racing world? We'll show you. When it comes to turning raw metal alloys into useful things, two processes dominate - casting and forging. Both have their place, but when strength and light weight are priorities, forging is the method of choice. Though it’s been around for more than six millennia, forging processes continue to advance the state of the art, bringing us everything from sharper, more durable kitchen knives to more fuel efficient jet engines, plus things much closer to our heart: lighter, stronger pistons. Although forging is a metalworking process thousands of years old, it’s still the best method to produce components with the highest strength and durability. Forging is defined as the controlled deformation of metal into a desired shape by compressive force. At its most basic, it’s a blacksmith working a piece with a hammer and anvil, and those first metalworkers toiling at their forges discovered something important about the pieces they were crafting – compared to similar objects made from melted and cast metal, they were stronger and more durable. Though they knew the finished product was superior, what those ancient smiths didn’t suspect was that the act of forging was changing the internal grain structure of the metal, aligning it to the direction of force being applied, and making it stronger, more ductile, and giving it higher resistance to impact and fatigue. While a cast metal part will have a homogeneous, random grain structure, forging can intentionally direct that structure in ways that give a finished part the highest structural integrity of any metalworking process. Wiseco forged pistons start as raw bar stock in certified 2618 or 4032 aluminum alloy. Once they’re cut into precisely-sized ‘pucks’ they’re ready to be preheated in preparation for forging. Although many performance enthusiasts might put billet parts at the top of the heap in terms of desirability, the reality is that the billet they are created from doesn't have the same grain properties of a forging. The Wiseco Forging Process Today’s state of the art in forging technology is far removed from the smith’s bellows-stoked fire and anvil. In Wiseco’s ISO 9000-certified forging facility, pistons begin life as certified grade aluminum bar stock, cut to precise lengths to form slugs. The choice of material is critical - conventional wisdom has always said that a forged piston requires additional piston-to-bore clearance to allow for expansion, leading to noise from piston slap until the engine gets up to temperature, but per Wiseco’s Research and Development Manager David Fussner, “Forged pistons do require additional room temperature clearance. However, the 4032 forging alloy we use has about 12% silicon content, and this significantly controls the expansion to nearly the same as a 12% silicon cast piston. The 2618 alloy expands a bit more and does require a bit more room temperature clearance than 4032.” Pistons are forged in a ‘backwards extrusion’ process where a moving punch presses the raw material into the die to form the rough shape. The process takes only a fraction of a second (longer in the isothermal press), and the speed of the press helps determine how material flows, and therefore the internal grain structure of the forging. While 4032 is more dimensionally stable across the typical operating temperature range seen inside an engine, it does give up a small advantage in ductility to 2618, which has a silicon content of less than 0.2 percent. This makes 2618 a better choice for applications where detonation may be an issue, like race engines running high boost or large doses of nitrous oxide. The low silicon alloy’s more forgiving nature in these instances makes up for the tradeoffs in increased wear and shorter service life compared to 4032. Once cut to the proper size, slugs are heated to a predetermined temperature and moved to the forging press itself, which is also maintained at a controlled temperature. There are two different types of presses employed at Wiseco; mechanical and hydraulic. Both have a long history in manufacturing, and each has specific strengths. Mechanical forging presses are well-suited to high production rates, helping to keep the overall cost of high-quality forged components affordable. Hydraulic presses have the advantage of variable speed and force throughout the process, allowing greater control of material flow, which can be used to produced forged components with even more precisely controlled physical properties. Wiseco’s isothermal hydraulic press forging machines use precise digital control of the temperature of the raw material, the punch, and the die, as well as the pressure exerted during the full motion of the forge. This allows very close control over the physical properties of the finished forging. Regardless of the type of press, pistons are forged using a “backwards extrusion” process where the material from the slug flows back and around the descending punch to form the cup-shaped forging. Picture the stationary part of the press (the die) as the mirror image of the piston top, and the punch as the mirror image of the underside. As the punch descends, the puck is transformed into the rough piston shape with material flowing up along the sides of the die and punch to form the skirt. This entire process takes place on the scale of milliseconds (on the mechanical press), and the all-important flow stresses of the material are determined by the strain rate (or speed) and load applied by the press. In addition to three mechanical forge presses, Wiseco also has two isothermal hydraulic presses in-house. These state of the art forges maintain the temperature of the piston slug, the die, and the punch very accurately through computer control, delivering more precise dimensions and geometry for the finished pieces, as well as allowing for more complex designs to be successfully forged, and even the creation of metal matrix composite forgings. Once the puck (left) has been transformed into a forged blank (middle), it still has a ways to go before becoming a completed piston (right). The Heat Is On Once the forging process is complete, the components next move to heat treatment. Wiseco’s aerospace-grade heat treatment facility is located in the same plant as the presses, and here the pistons go through a carefully controlled process of heating and cooling that relieves stress induced during forging, increases the overall strength and ductility of the metal, and provides the desired surface hardness characteristics. While casting can deliver parts straight out of the mold that are very close to their final shape, forgings require a bit more attention in order to get them into shape. Fussner explains, “In a dedicated forging for a specific purpose, the interior of the forging blank is at near-net as it comes off the forging press. And in some cases, we also forge the dome near-net with valve pockets and some other features. Other than these items, most other features do require machining.” Pistons aren't the only thing Wiseco forges and machines in-house. Wiseco clutch are also forged and machined, as well as finished with hard anodizing. The forging (left) allows the basket to closer to the final shape before machining. The basket shown here is just post-machining. One basic forging may serve as the starting point for many different types of finished pistons, unlike castings which are typically unique to a single design or a small group of very similar designs. Regardless of the manufacturing method for the piston blank, some degree of final machining needs to take place to create a finished part. “As a ballpark percentage, I would say about 75% of the forging blank would require machining.” Cast pistons also require finish work on the CNC machine, but this is almost always less extensive than a similar forged piston. “That’s the main reason why forged pistons are more expensive than a cast piston,” Fussner adds. Another reason for the added expense of forging is the significant cost of the initial tooling for the die and punch, which must be made to exact specifications and be durable enough to survive countless forging press cycles. Per Fussner, “We control these costs by making all our forging tooling in house at Wiseco headquarters in Mentor, Ohio.” The ability to make their own tooling, doing their own forging, and their in-house heat treatment facilities make Wiseco the only aftermarket forged piston manufacturer in the United States with these unique capabilities. Once the machining process is complete, Wiseco pistons can also receive a number of different proprietary coatings to fine-tune their performance. These include thermal barriers as well as wear reduction treatments. Though forging is a technique literally as old as the Iron Age, it’s still the undisputed king of manufacturing techniques for light, strong, durable components. Wiseco continues to refine the process with the latest methods, materials, heat treatment, and machining to provide the highest quality aftermarket components available, at an affordable price. Wiseco forged pistons provide superior quality and performance at an affordable price thanks to the company’s close control over every step of the manufacturing process.
  3. MENTOR, Ohio (April 17, 2018) – Wiseco’s Jeremy Martin wowed the hometown crowd and collected his second consecutive Eastern Regional 250SX Class win in Saturday night’s Monster Energy AMA Supercross, an FIM World Championship, in Minneapolis. Despite the blizzard-like conditions outside, Martin, a native of Millville, Minn., was red hot inside U.S. Bank Stadium, home of the NFL’s Minnesota Vikings. The rider of the Wiseco-sponsored No. 6 GEICO/AMSOIL/Factory Connection Honda CRF250R was second-quickest in both qualifying sessions, serving notice to the competition that he’d be a formidable opponent when the gate dropped on the third and final triple crown race of the season. The Triple Crown is new for the 2018 season, and features a three-race showdown where both the 250SX Class and premier 450SX Class competes in three main events. Each triple crown event features Olympic-style scoring where the rider with the lowest point tally at the end of the night collects the overall win. Martin gave his detractors plenty to chew on by turning in a stellar 3-3-1 performance, while picking up back-to-back Eastern Regional 250 SX wins. “I just kept grinding and kept working,” explained Martin. “We got the bike a lot better. We’re figuring some stuff out and it’s really been showing. It gets a little frustrating when hear people being critical. A lot of people say I can’t ride supercross, but all I got to say is ‘you can put that in your pipe and smoke it.'" The spirited effort propelled Martin to third in Eastern Regional points, where he trails point leader Zach Osborne by 16 markers with two races left to decide the title. Beyond the series implications, Saturday night’s win was even more special because it came in front of Martin’s Minnesota faithful. “I was pretty excited to win the home race,” said Martin. “To win in front of the hometown crowd, I was going a little nuts after the race. It’s an opportunity of a lifetime to be able to race here in Minneapolis and to get the win was unreal. I wear earplugs when I moto, but I could hear the crowd through the earplugs and over my dirt bike, so I was like, ‘my God, it was loud.’” Meanwhile, across the paddock in the 450SX Class pits, Team Honda HRC’s Christian Craig wrestled with a less-than-easy night. Still, the rider if the No. 32 CRF450R stayed the course and improved in each of the three main events, forging a workman-like 14-10-7 effort, to be credited with a ninth-place finish at night’s end. “We had a tough night, honestly,” commented Craig. “All day I struggled with my breathing and I’m not sure why because that hasn’t happened to me before. I was able to put a fast time down for practice, but in the main events, I struggled and kept having to remind myself to breath, which was spiking my heart rate. I almost felt like my body was shutting down. The first race was the worst after my crash. I got better with it through the night, luckily, but still nowhere near happy. I was able to push through my own battles and finish ninth overall. It’s been a hard couple weekends, but I’ll get through it. I’m going to focus on a lot of things this week and come back fresh next weekend in Foxboro.” Monster Energy AMA Supercross returns to Foxboro, Mass., this weekend after a one-year absence as the series visits Gillette Stadium and the home of the New England Patriots. The 15th of 17 races on the 2018 Monster Energy Supercross calendar will be televised live on network TV Saturday, April 21 on FOX beginning at 3 p.m. Eastern Daylight Time, 1 p.m. Pacific.
  4. Hey Torin, As said above, there's a good chance the ring is worn out, but you'll also want to make sure the exhaust bridge is relieved and the ports are chamfered. That thin exhaust bridge will expand a lot with heat, and come in contact with the piston. If it comes in contact bad enough, it could seize in that spot. Check out our tips to cylinder prep: Depending on the scoring, the cylinder might need a replate, in which place the machine shop can give you the final bore size so you can find the proper piston.
  5. Thank you for including the article in your thread and sharing your experience!
  6. Everyone beat me to it! Thank you for sharing the recommended break-in article. It sounds like your compression is in the right range given all the variables. It will likely show a little more once you have it in the bike with intake and exhaust, and ring(s) seated.
  7. For motorcycle engines, we've always used the normal recommended oil for your engine, but making sure to do the first oil change a lot sooner than usual to get any fresh metallic particles out of there.
  8. We've always found that 40:1 with synthetic has worked well, but 32:1 has always been a safe ratio for other oils. 50:1 will work in a lot of cases, but sometimes we feel it's better to have a little extra cushion at the expense of a little mess.
  9. Proper engine break-in is equally as important as a proper rebuild. Here, we'll go over a checklist to make your build will last, as well as a step-by-step break-in process. Putting in the time and money to rebuild your motorcycle engine is both a critical job and a prideful accomplishment. The feeling of an engine failure right after a rebuild is a sinking one, and will most likely stir up a mixture of frustration and disappointment. We want to help as many people as we can avoid that feeling. So, we've put together a review checklist for your rebuild, followed by a general engine break-in procedure, because your motorcycle should bring joy and fun to your life, not take tufts of hair out of your head. We'll start with a quick review on the motorcycle top end rebuild. Be sure these critical steps and precautions have been taken. If you find any concerning discrepancies, it's worth it to pull back apart and double check. Be sure that you have proper piston to cylinder clearance. Recently, a cylinder was bored with requested .0035” clearance. This machine shop has been in the area for over 30 years. When complete, it looked like it was tighter. He slipped the piston through the cylinder a few times and said, "It's okay." He was asked to check again, which he refused, and said that it was correct, and that he was too busy. Back in the Brew Bikes shop, it was double-checked, and clearance was .0015”. Yes, way too tight. Don’t just take someone’s word that clearance is correct, always double check it! Always double check your piston-to-wall clearance. Was the honing of the cylinder properly done? Honing is required to be done after boring, and if the cylinder was not bored, it still is needed to deglaze the cylinder for proper ring break-in. Different honing tools are better used for different applications, with common tools being brush hones and flex hones. Safe grits and hone materials depend on the cylinder finish, so check your manual or with the cylinder shop for a recommendation. Be sure that the crosshatch is at 45 degrees. The proper crosshatch will retain the proper amount of lubricating oil while allowing the rings and piston to break-in. Too little of crosshatch or too much will not allow the rings to break-in correctly and never get the proper sealing they were designed for. Read our full guide to cylinder prep. After proper honing and deglazing, your cylinder wall should have a consistent, 45 degree crosshatch. If the bike is a 2 stroke don’t forget to chamfer the ports. If it has a bridge in the exhaust port, most pistons require this area to be relieved. READ the piston specs, and if you don’t understand, be sure to reach out to Wiseco for specifications. Read our guide to relieving the exhaust bridge in 2-stroke cylinders. A critical step in 2-stroke cylinder prep is port edge relief and exhaust bridge relief. This will help ensure smooth piston and ring operation, and combat accelerated ring wear. Be certain that the ring gap is within specification. Don’t assume it is correct, check it. Always double check your ring end gap. With your compression ring in the cylinder, measure the end gap with a feeler gauge to ensure it's within the spec included in your piston instructions. Proper cleaning of the cylinder. Before you start cleaning make sure the gasket areas are clean with no residue of gasket or sealers. First, use a cleaning solvent with a brush and then again with a rag. This is not enough, and you will need to clean with dish soap and water. Using a clean rag you will be amazed on how much grit from the honing is still in the cylinder. Be sure to clean the piston also. Thoroughly cleaning your cylinder for a rebuild is critical. Be sure all old gasket material is removed, and use a 2-step cleaning process of solvent with a brush and rag, followed by soap and water. When the cylinder is clean and dry, you should be able to wipe the cylinder wall with a clean rag and not see any honing material residue. Then before assembly, use plenty of assembly lube on the cylinder and the piston. Don’t forget to lube the piston pin and bearing along with the rings. Assembly lube on the piston, rings, cylinder, pin, and bearing is important for proper break-in. Many rings have a topside for proper sealing. Double check this and be sure the proper ring is on the proper landing on the piston. Again, read the instructions that came with the piston. Piston ring markings vary, but the marking should always face up when installed on the piston. The gaskets and quality play an important part of engine rebuilding. If a gasket is thicker than the original, it could result in a loss of power. Worse yet, a gasket thinner than the original will result in less deck height (piston to head clearance). This reduced clearance may result the piston to come in contact of the head causing permanent damage. After placing the gaskets, be sure while assembling the piston in the cylinder that the ring gaps are in proper placement. Check your engine manual for proper placement of the piston gaps. Then, install the head. Many motorcycle manufacturers have a desired head nut tightening sequence. Refer to their procedures while doing this. Most companies give the head nut torque rating with the washers, nuts and studs being clean and dry. That means if you use oil or a thread locking compound the studs will be over-stressed due to the over-tightening of the head nuts. Engines have been damaged by this. Now you know, follow what the engine manufacturer recommends! Regardless of the type of motorcycle engine you're working on, there should be a tightening sequence and torque spec for the head nuts. Pay close attention to the specs in the manual, as these are critical to prevent damage and for proper operation. Use the proper engine oil and fill to the proper level. The fuel you use should be fresh and of the proper octane. If your engine is a 2 stroke, mix to the proper fuel/oil ratio. For just about any 2-stroke, whether vintage or a newer, a 32:1 fuel/oil mixture is very common, but check your manual for the recommended ratio. Not only is it important for piston lubrication, but also for the crank bearings and seals. After all this work has been done, and you feel confident with the rebuild, what else can go wrong? PROPER ENGINE BREAK-IN! So many mistakes can happen while breaking in the piston and rings, resulting in rings never properly sealing or/and piston galling. Many builders have their own procedures, but most all do heat cycling for breaking in engines. Before we get into it, please note that this is just one of many methods that work well for engine break-in. Many people have many different effective methods, this is just one example that has worked well for us. Use this break-in procedure as a guideline for your next fresh top end: It's important to ask yourself if the rebuilt engine is still using the same carburetor, air cleaner, exhaust system, cam, compression, or if a 2-stroke, the same port work configuration? Any changes can result in air/fuel mixtures to be either too rich or too lean, resulting in engine damage. If your engine is fuel injected and in good working order, the ECU and O2 sensor should keep the air/fuel mixture correct. If you have access to an air/fuel meter, or if a 2-stroke, an EGT (Exhaust Gas Temperature) gauge, check the air/fuel mixture. Even with these tools, spark plug readings are still recommended. Spark plug readings are a sure-fire way of knowing if your engine is running too lean or too rich. We'll get into more detail in a later article, but generally the plug will look white when it's too lean, and dark brown or black and wet when too rich. At first start up, keep the engine just above idle and give it a few revs up and down. This power on and power off RPM breaks in the piston and rings evenly on the intake and exhaust sides. If air cooled, once the engine builds up heat where it becomes too hot to touch, shut the engine off. If water-cooled, once the engine coolant starts rising in temperature, shut the engine off. This initial warm up takes just a couple minutes. Now wait a few minutes until the engine is slightly warm to the touch, repeat #2, letting the engine get slightly hotter. Be sure to keep the engine RPMs above normal idle and keep the RPMs going up and down slowly. Let it cool again till it is slightly warm to the touch. This time, start and run longer until the engine gets near operating temperature. If air cooled, be sure you have a fan pushing air from the front. You now can rev the RPMs up a little higher, being sure not to hold it at a sustained RPM, but revving it up and down. Let the engine cool completely. Check all fluid levels to be sure there is no loss of engine lubricant, or, if water-cooled, engine coolant. After engine is cool, do a plug reading to be sure it is not running lean. Because the engine has run a few heat cycles, the gaskets may have compressed. It is VERY IMPORTANT to be sure engine is totally cooled down, and then check the torque of the cylinder head nuts. Most times the cycling head nuts will need some re-tightening. DON’T over-tighten; just tighten to manufacturers’ specification as you did when assembling the engine. Next, warm up the engine for a couple minutes as you did in the other procedures. Ride the bike, revving the engine up to normal riding RPM. Be sure NOT to keep the RPM too low and don’t lug the engine. These low RPM’s actually puts much more stress on the engine parts. If this is a dirt bike, running on a track is best due to the up and down RPMs the engine will experience. Don’t be afraid to run it normally. If this is a road bike, a curvy road is best due to the RPMs going up and down, this is a must! Don’t lug the engine and don’t go on an open highway that keeps the engine at a sustained RPM. This first initial ride will only be about 5 minutes. Let the engine cool till you can touch the engine. Follow the same procedure as above, but this time running for 10 minutes. This will be your last break-in run. Follow the above procedure and run for 15 minutes. Now is the time to let the engine totally cool down again. Check the fluids as you did before after the engine has completely cooled down, and do another spark plug reading. It is now time to do another check of the cylinder head nuts for proper torque. Sometimes no additional tightening is needed, but don’t be alarmed if you need to, because this is normal Check all your fluids once more after the engine cools, inclduing coolant and oil level. At this time, the rings and piston should be broken in. Go out and ride it. The first few times, just be sure not to get the engine overheated, but your ride times are not restricted. It never hurts to do another spark plug reading and double-check the head nuts after your first long ride. Enjoy your rides, and be safe!
  10. Message sent!
  11. Wow, very nice. I've always had a soft spot for first-gen Camaros! We appreciate your support.
  12. Thank you very much for your long time support, it is much appreciated! Long-time customers such as yourself are how we've been able to build from just a small shop for so many years. We do take pride in our quality, and assessing issues and addressing them has been an ongoing process since crank introduction. Just like with our pistons, we never want to stop improving, and work on cranks is continuing as we speak. Again, we appreciate your support, and value your opinion.
  13. Purchase any Wiseco Powersports product(s) with a subtotal of $250 or more between March 21st 2018 and May 31st 2018, and receive a ProX air filter FREE by mail-in rebate! Just follow the redemption process outlined below. A Race-Quality, Dual-Stage Air Filter for Free! ProX air filters feature dual-stage bonded foam, to capture dirt and debris, from coarse to fine. The thick, flat sealing ring provides a proper seat on the air box, to keep everything but air out. ProX air filters optimize air flow and protection in one package. How to Redeem Your Free ProX Air Filter: Purchase Wiseco Powersports product subtotaling $250 or more between March 21st 2018 and May 31st 2018. Download the rebate form here. Complete the form and include a copy of your receipt showing the seller's name/company and selling price(s), and the product serial number(s). Cut out the barcode label(s) on the side of the box with the Wiseco part number(s) and mail in with your redemption form. Mail completed form and copy of receipt to: Wiseco Performance Products Attn: ProX Air Filter Rebate 7201 Industrial Park Blvd. Mentor, Ohio 44060 You will receive your free air filter in 4-6 weeks. Go here for complete details and terms and conditions. ProX air filters feature dual-stage bonded foam and thick sealing rings, creating a reliable combination of protection and performance. Learn about proper air filter maintenance and performance here.
  14. We'd like to help how we can, because this seems like an unusual failure. If you wouldn't mind sending it in when you get a chance, we can inspect it and try to get a better explanation. If you get the chance to send it in, please let us know and we will give you shipping and contact information.
  15. A rod break in that location is definitely concerning. Would it be possible to have you send us the crank/rod for inspection?