Jump to content

Search the Community

Showing results for tags '2-Stroke'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Dirt Bikes
    • General Dirt Bike Forums
    • Make / Model Specific
    • Dirt Bike Technical Forums
    • Special Interest Forums
    • Dirt Bike Regional Discussion
  • General
    • General Forums
  • ATV / UTV
    • General ATV / UTV Forums
    • Make/Model Specific
    • ATV / UTV Regional Discussion
  • Inside TT
    • Advertise
    • Community Sponsors
    • Site Usage & Functions
    • Bug Reports & Suggestions
  • ThumperTalk Clubs FAQ & Help's FAQ/Help & Discussion
  • RokFox's Current Kit
  • RokFox's What's New
  • So Cal Flattrack's Club Forum
  • Pittsburgh Area Off-Road N@'s Welcome!
  • Walker Valley Single Track Riders's Club Forum
  • Thumperjunkies - Ottawa & Eastern Ontario Riders's Discussion
  • Jersey MX and offroad's Places you ride
  • Jersey MX and offroad's Discussion
  • Sonoma Coast Skinny Twisties's Discussion
  • Sonoma Coast Skinny Twisties's Topics
  • New Mexico Trail Riders's Discussion
  • Okanagan Off Road Motocycle Club's Club Forum
  • Redwood Riders's Club Forum
  • jack graybill's Club Photos
  • TAS trail/Enduro riders's Club Forum

Categories

  • Universal Parts & Accessories
  • Parts & Acc. - Japanese Bikes
    • Honda Parts & Accessories
    • Kawasaki Parts & Accessories
    • Suzuki Parts & Accessories
    • Yamaha Parts & Accessories
  • Parts & Acc. - Euro Bikes
    • Beta Parts & Accessories
    • Husqvarna Parts & Accessories
    • KTM Parts & Accessories
    • Other Euro Parts & Accessories
  • Motorcycles
    • Off-Road Motorcycles
    • Dual Sport Motorcycles
    • Street Motorcycles
  • Powersports Gear & Apparel

Products Categories

Vehicles Categories

Garages

Blogs

There are no results to display.

There are no results to display.

Calendars

  • ThumperTalk Clubs FAQ & Help's Club Calendar
  • RokFox's Enduro Ride Schedule
  • So Cal Flattrack's Club Calendar
  • So Cal Flattrack's Events
  • Walker Valley Single Track Riders's Club Calendar
  • Thumperjunkies - Ottawa & Eastern Ontario Riders's Club Calendar
  • Thumperjunkies - Ottawa & Eastern Ontario Riders's Events
  • Sonoma Coast Skinny Twisties's Calendar
  • New Mexico Trail Riders's Events
  • Okanagan Off Road Motocycle Club's Club Calendar
  • Redwood Riders's Club Calendar
  • jack graybill's Club Calendar
  • TAS trail/Enduro riders's Club Calendar

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


AIM


MSN


Website URL


ICQ


Yahoo


Jabber


Skype


Interests

Found 6 results

  1. When it comes to overall strength, there's no beating a forged piston. But what is the process that yields the toughest parts in the racing world? We'll show you. When it comes to turning raw metal alloys into useful things, two processes dominate - casting and forging. Both have their place, but when strength and light weight are priorities, forging is the method of choice. Though it’s been around for more than six millennia, forging processes continue to advance the state of the art, bringing us everything from sharper, more durable kitchen knives to more fuel efficient jet engines, plus things much closer to our heart: lighter, stronger pistons. Although forging is a metalworking process thousands of years old, it’s still the best method to produce components with the highest strength and durability. Forging is defined as the controlled deformation of metal into a desired shape by compressive force. At its most basic, it’s a blacksmith working a piece with a hammer and anvil, and those first metalworkers toiling at their forges discovered something important about the pieces they were crafting – compared to similar objects made from melted and cast metal, they were stronger and more durable. Though they knew the finished product was superior, what those ancient smiths didn’t suspect was that the act of forging was changing the internal grain structure of the metal, aligning it to the direction of force being applied, and making it stronger, more ductile, and giving it higher resistance to impact and fatigue. While a cast metal part will have a homogeneous, random grain structure, forging can intentionally direct that structure in ways that give a finished part the highest structural integrity of any metalworking process. Wiseco forged pistons start as raw bar stock in certified 2618 or 4032 aluminum alloy. Once they’re cut into precisely-sized ‘pucks’ they’re ready to be preheated in preparation for forging. Although many performance enthusiasts might put billet parts at the top of the heap in terms of desirability, the reality is that the billet they are created from doesn't have the same grain properties of a forging. The Wiseco Forging Process Today’s state of the art in forging technology is far removed from the smith’s bellows-stoked fire and anvil. In Wiseco’s ISO 9000-certified forging facility, pistons begin life as certified grade aluminum bar stock, cut to precise lengths to form slugs. The choice of material is critical - conventional wisdom has always said that a forged piston requires additional piston-to-bore clearance to allow for expansion, leading to noise from piston slap until the engine gets up to temperature, but per Wiseco’s Research and Development Manager David Fussner, “Forged pistons do require additional room temperature clearance. However, the 4032 forging alloy we use has about 12% silicon content, and this significantly controls the expansion to nearly the same as a 12% silicon cast piston. The 2618 alloy expands a bit more and does require a bit more room temperature clearance than 4032.” Pistons are forged in a ‘backwards extrusion’ process where a moving punch presses the raw material into the die to form the rough shape. The process takes only a fraction of a second (longer in the isothermal press), and the speed of the press helps determine how material flows, and therefore the internal grain structure of the forging. While 4032 is more dimensionally stable across the typical operating temperature range seen inside an engine, it does give up a small advantage in ductility to 2618, which has a silicon content of less than 0.2 percent. This makes 2618 a better choice for applications where detonation may be an issue, like race engines running high boost or large doses of nitrous oxide. The low silicon alloy’s more forgiving nature in these instances makes up for the tradeoffs in increased wear and shorter service life compared to 4032. Once cut to the proper size, slugs are heated to a predetermined temperature and moved to the forging press itself, which is also maintained at a controlled temperature. There are two different types of presses employed at Wiseco; mechanical and hydraulic. Both have a long history in manufacturing, and each has specific strengths. Mechanical forging presses are well-suited to high production rates, helping to keep the overall cost of high-quality forged components affordable. Hydraulic presses have the advantage of variable speed and force throughout the process, allowing greater control of material flow, which can be used to produced forged components with even more precisely controlled physical properties. Wiseco’s isothermal hydraulic press forging machines use precise digital control of the temperature of the raw material, the punch, and the die, as well as the pressure exerted during the full motion of the forge. This allows very close control over the physical properties of the finished forging. Regardless of the type of press, pistons are forged using a “backwards extrusion” process where the material from the slug flows back and around the descending punch to form the cup-shaped forging. Picture the stationary part of the press (the die) as the mirror image of the piston top, and the punch as the mirror image of the underside. As the punch descends, the puck is transformed into the rough piston shape with material flowing up along the sides of the die and punch to form the skirt. This entire process takes place on the scale of milliseconds (on the mechanical press), and the all-important flow stresses of the material are determined by the strain rate (or speed) and load applied by the press. In addition to three mechanical forge presses, Wiseco also has two isothermal hydraulic presses in-house. These state of the art forges maintain the temperature of the piston slug, the die, and the punch very accurately through computer control, delivering more precise dimensions and geometry for the finished pieces, as well as allowing for more complex designs to be successfully forged, and even the creation of metal matrix composite forgings. Once the puck (left) has been transformed into a forged blank (middle), it still has a ways to go before becoming a completed piston (right). The Heat Is On Once the forging process is complete, the components next move to heat treatment. Wiseco’s aerospace-grade heat treatment facility is located in the same plant as the presses, and here the pistons go through a carefully controlled process of heating and cooling that relieves stress induced during forging, increases the overall strength and ductility of the metal, and provides the desired surface hardness characteristics. While casting can deliver parts straight out of the mold that are very close to their final shape, forgings require a bit more attention in order to get them into shape. Fussner explains, “In a dedicated forging for a specific purpose, the interior of the forging blank is at near-net as it comes off the forging press. And in some cases, we also forge the dome near-net with valve pockets and some other features. Other than these items, most other features do require machining.” Pistons aren't the only thing Wiseco forges and machines in-house. Wiseco clutch are also forged and machined, as well as finished with hard anodizing. The forging (left) allows the basket to closer to the final shape before machining. The basket shown here is just post-machining. One basic forging may serve as the starting point for many different types of finished pistons, unlike castings which are typically unique to a single design or a small group of very similar designs. Regardless of the manufacturing method for the piston blank, some degree of final machining needs to take place to create a finished part. “As a ballpark percentage, I would say about 75% of the forging blank would require machining.” Cast pistons also require finish work on the CNC machine, but this is almost always less extensive than a similar forged piston. “That’s the main reason why forged pistons are more expensive than a cast piston,” Fussner adds. Another reason for the added expense of forging is the significant cost of the initial tooling for the die and punch, which must be made to exact specifications and be durable enough to survive countless forging press cycles. Per Fussner, “We control these costs by making all our forging tooling in house at Wiseco headquarters in Mentor, Ohio.” The ability to make their own tooling, doing their own forging, and their in-house heat treatment facilities make Wiseco the only aftermarket forged piston manufacturer in the United States with these unique capabilities. Once the machining process is complete, Wiseco pistons can also receive a number of different proprietary coatings to fine-tune their performance. These include thermal barriers as well as wear reduction treatments. Though forging is a technique literally as old as the Iron Age, it’s still the undisputed king of manufacturing techniques for light, strong, durable components. Wiseco continues to refine the process with the latest methods, materials, heat treatment, and machining to provide the highest quality aftermarket components available, at an affordable price. Wiseco forged pistons provide superior quality and performance at an affordable price thanks to the company’s close control over every step of the manufacturing process.
  2. Kevin from Wiseco

    Proper Motorcycle Engine Break-In After Rebuild

    Proper engine break-in is equally as important as a proper rebuild. Here, we'll go over a checklist to make your build will last, as well as a step-by-step break-in process. Putting in the time and money to rebuild your motorcycle engine is both a critical job and a prideful accomplishment. The feeling of an engine failure right after a rebuild is a sinking one, and will most likely stir up a mixture of frustration and disappointment. We want to help as many people as we can avoid that feeling. So, we've put together a review checklist for your rebuild, followed by a general engine break-in procedure, because your motorcycle should bring joy and fun to your life, not take tufts of hair out of your head. We'll start with a quick review on the motorcycle top end rebuild. Be sure these critical steps and precautions have been taken. If you find any concerning discrepancies, it's worth it to pull back apart and double check. Be sure that you have proper piston to cylinder clearance. Recently, a cylinder was bored with requested .0035” clearance. This machine shop has been in the area for over 30 years. When complete, it looked like it was tighter. He slipped the piston through the cylinder a few times and said, "It's okay." He was asked to check again, which he refused, and said that it was correct, and that he was too busy. Back in the Brew Bikes shop, it was double-checked, and clearance was .0015”. Yes, way too tight. Don’t just take someone’s word that clearance is correct, always double check it! Always double check your piston-to-wall clearance. Was the honing of the cylinder properly done? Honing is required to be done after boring, and if the cylinder was not bored, it still is needed to deglaze the cylinder for proper ring break-in. Different honing tools are better used for different applications, with common tools being brush hones and flex hones. Safe grits and hone materials depend on the cylinder finish, so check your manual or with the cylinder shop for a recommendation. Be sure that the crosshatch is at 45 degrees. The proper crosshatch will retain the proper amount of lubricating oil while allowing the rings and piston to break-in. Too little of crosshatch or too much will not allow the rings to break-in correctly and never get the proper sealing they were designed for. Read our full guide to cylinder prep. After proper honing and deglazing, your cylinder wall should have a consistent, 45 degree crosshatch. If the bike is a 2 stroke don’t forget to chamfer the ports. If it has a bridge in the exhaust port, most pistons require this area to be relieved. READ the piston specs, and if you don’t understand, be sure to reach out to Wiseco for specifications. Read our guide to relieving the exhaust bridge in 2-stroke cylinders. A critical step in 2-stroke cylinder prep is port edge relief and exhaust bridge relief. This will help ensure smooth piston and ring operation, and combat accelerated ring wear. Be certain that the ring gap is within specification. Don’t assume it is correct, check it. Always double check your ring end gap. With your compression ring in the cylinder, measure the end gap with a feeler gauge to ensure it's within the spec included in your piston instructions. Proper cleaning of the cylinder. Before you start cleaning make sure the gasket areas are clean with no residue of gasket or sealers. First, use a cleaning solvent with a brush and then again with a rag. This is not enough, and you will need to clean with dish soap and water. Using a clean rag you will be amazed on how much grit from the honing is still in the cylinder. Be sure to clean the piston also. Thoroughly cleaning your cylinder for a rebuild is critical. Be sure all old gasket material is removed, and use a 2-step cleaning process of solvent with a brush and rag, followed by soap and water. When the cylinder is clean and dry, you should be able to wipe the cylinder wall with a clean rag and not see any honing material residue. Then before assembly, use plenty of assembly lube on the cylinder and the piston. Don’t forget to lube the piston pin and bearing along with the rings. Assembly lube on the piston, rings, cylinder, pin, and bearing is important for proper break-in. Many rings have a topside for proper sealing. Double check this and be sure the proper ring is on the proper landing on the piston. Again, read the instructions that came with the piston. Piston ring markings vary, but the marking should always face up when installed on the piston. The gaskets and quality play an important part of engine rebuilding. If a gasket is thicker than the original, it could result in a loss of power. Worse yet, a gasket thinner than the original will result in less deck height (piston to head clearance). This reduced clearance may result the piston to come in contact of the head causing permanent damage. After placing the gaskets, be sure while assembling the piston in the cylinder that the ring gaps are in proper placement. Check your engine manual for proper placement of the piston gaps. Then, install the head. Many motorcycle manufacturers have a desired head nut tightening sequence. Refer to their procedures while doing this. Most companies give the head nut torque rating with the washers, nuts and studs being clean and dry. That means if you use oil or a thread locking compound the studs will be over-stressed due to the over-tightening of the head nuts. Engines have been damaged by this. Now you know, follow what the engine manufacturer recommends! Regardless of the type of motorcycle engine you're working on, there should be a tightening sequence and torque spec for the head nuts. Pay close attention to the specs in the manual, as these are critical to prevent damage and for proper operation. Use the proper engine oil and fill to the proper level. The fuel you use should be fresh and of the proper octane. If your engine is a 2 stroke, mix to the proper fuel/oil ratio. For just about any 2-stroke, whether vintage or a newer, a 32:1 fuel/oil mixture is very common, but check your manual for the recommended ratio. Not only is it important for piston lubrication, but also for the crank bearings and seals. After all this work has been done, and you feel confident with the rebuild, what else can go wrong? PROPER ENGINE BREAK-IN! So many mistakes can happen while breaking in the piston and rings, resulting in rings never properly sealing or/and piston galling. Many builders have their own procedures, but most all do heat cycling for breaking in engines. Before we get into it, please note that this is just one of many methods that work well for engine break-in. Many people have many different effective methods, this is just one example that has worked well for us. Use this break-in procedure as a guideline for your next fresh top end: It's important to ask yourself if the rebuilt engine is still using the same carburetor, air cleaner, exhaust system, cam, compression, or if a 2-stroke, the same port work configuration? Any changes can result in air/fuel mixtures to be either too rich or too lean, resulting in engine damage. If your engine is fuel injected and in good working order, the ECU and O2 sensor should keep the air/fuel mixture correct. If you have access to an air/fuel meter, or if a 2-stroke, an EGT (Exhaust Gas Temperature) gauge, check the air/fuel mixture. Even with these tools, spark plug readings are still recommended. Spark plug readings are a sure-fire way of knowing if your engine is running too lean or too rich. We'll get into more detail in a later article, but generally the plug will look white when it's too lean, and dark brown or black and wet when too rich. At first start up, keep the engine just above idle and give it a few revs up and down. This power on and power off RPM breaks in the piston and rings evenly on the intake and exhaust sides. If air cooled, once the engine builds up heat where it becomes too hot to touch, shut the engine off. If water-cooled, once the engine coolant starts rising in temperature, shut the engine off. This initial warm up takes just a couple minutes. Now wait a few minutes until the engine is slightly warm to the touch, repeat #2, letting the engine get slightly hotter. Be sure to keep the engine RPMs above normal idle and keep the RPMs going up and down slowly. Let it cool again till it is slightly warm to the touch. This time, start and run longer until the engine gets near operating temperature. If air cooled, be sure you have a fan pushing air from the front. You now can rev the RPMs up a little higher, being sure not to hold it at a sustained RPM, but revving it up and down. Let the engine cool completely. Check all fluid levels to be sure there is no loss of engine lubricant, or, if water-cooled, engine coolant. After engine is cool, do a plug reading to be sure it is not running lean. Because the engine has run a few heat cycles, the gaskets may have compressed. It is VERY IMPORTANT to be sure engine is totally cooled down, and then check the torque of the cylinder head nuts. Most times the cycling head nuts will need some re-tightening. DON’T over-tighten; just tighten to manufacturers’ specification as you did when assembling the engine. Next, warm up the engine for a couple minutes as you did in the other procedures. Ride the bike, revving the engine up to normal riding RPM. Be sure NOT to keep the RPM too low and don’t lug the engine. These low RPM’s actually puts much more stress on the engine parts. If this is a dirt bike, running on a track is best due to the up and down RPMs the engine will experience. Don’t be afraid to run it normally. If this is a road bike, a curvy road is best due to the RPMs going up and down, this is a must! Don’t lug the engine and don’t go on an open highway that keeps the engine at a sustained RPM. This first initial ride will only be about 5 minutes. Let the engine cool till you can touch the engine. Follow the same procedure as above, but this time running for 10 minutes. This will be your last break-in run. Follow the above procedure and run for 15 minutes. Now is the time to let the engine totally cool down again. Check the fluids as you did before after the engine has completely cooled down, and do another spark plug reading. It is now time to do another check of the cylinder head nuts for proper torque. Sometimes no additional tightening is needed, but don’t be alarmed if you need to, because this is normal Check all your fluids once more after the engine cools, inclduing coolant and oil level. At this time, the rings and piston should be broken in. Go out and ride it. The first few times, just be sure not to get the engine overheated, but your ride times are not restricted. It never hurts to do another spark plug reading and double-check the head nuts after your first long ride. Enjoy your rides, and be safe!
  3. #Husqvarna #CR125 #2-Stroke #Maintenance #Advice
  4. Find out how to relieve an exhaust bridge and drill lubrication holes in 2 stroke applications, so you can get the most out of your piston! When you order a new Wiseco 2-stroke piston and open up the box and read the instructions, you might see something like “follow these steps to drill the lubrication holes.” There’s no doubt that the thought of drilling holes in your new piston can be scary and intimidating. But not to worry! We’ll get you through it right here with all the information you need and a step-by-step. Relieving the exhaust bridge and drilling lubrication holes is a common part of the 2-stroke top end replacement process, but the importance of performing these steps is unrealized by many and neglected too often. Drilling lubrication holes is a simple but important process for many 2 stroke applications. So, what is an exhaust bridge? First things first, not all 2-stroke cylinders have an exhaust bridge. So if your cylinder does not have one, drilling holes in your piston is not necessary. The exhaust bridge is the thin strip of metal that separates the exhaust ports in the cylinder. Whether you look into the exhaust ports through the exhaust outlet or through the cylinder bore, if you see a thin metal wall separating your exhaust ports, that is your exhaust bridge. For the purpose of installing a new Wiseco piston, the area of concern is the edge of the exhaust bridge on the inside of the cylinder bore. The exhaust bridge is the edge of the wall separating the exhaust ports on some 2 stroke cylinders. Why do I need to relieve the exhaust bridge? Now that we know what the exhaust bridge is, it’s important to understand why we feel this machine work is essential to replacing a 2-stroke top end. The most heat in your motor is generated from combustion in the cylinder during normal operation. Specifically, the exhaust port(s) of the cylinder are exposed to the most heat because this is the only way out for the hot gas produced during combustion. This means that under normal running conditions, your piston and your exhaust bridge are constantly under the pressure of extreme heat. Wiseco pistons are made from forged aluminum, which offers more strength and reliability, but also expands faster under heat than an OEM cast piston. The exhaust bridge will also expand more than the rest of the cylinder because it is such a thin structure. The lack of material makes it harder for heat to dissipate before it affects the aluminum and causes expansion. Expansion under heat is normal, but must be compensated for to make sure you get the most life and best performance out of your top end. Relieving the exhaust bridge simply means taking a small amount of material off the face the bridge in order to make room for expansion. If there wasn't any extra clearance, the exhaust bridge would expand past the cylinder wall once your motor heats up. This leads to scoring on the piston as it comes into contact with the exhaust bridge, especially as the piston expands at the same time. Notice the small amount of material taken off of the exhaust bridge, and the blending back into the cylinder. Read below on how to accomplish this. Relieving the Exhaust Bridge Now that we have some understanding established, let’s go through how to get it done. As always, if you don’t feel comfortable doing this work, this can commonly be done by the shop performing your cylinder work. If you have the rights tools, this can be done in the garage on cast iron and steel cylinder bore liners. We recommend using a die grinder with a small sanding roll to gently remove .003” of material off the cylinder wall face of the exhaust bridge. After the material is removed, the machining must be blended with the rest of the cylinder wall at the top and bottom of the exhaust bridge. You want to make sure there’s an easy slope for the piston ring to slide over when entering and exiting the exhaust bridge relief. If your cylinder is lined with Nikasil, this process will not work because that material is too hard. Your exhaust bridge must be relieved before being lined with Nikasil to achieve the same result. Check with the shop you choose for your cylinder work if you are unsure. Why do I need to drill holes in my piston? Relieving the exhaust bridge will make sure there’s no expansion past the cylinder wall, but we still want to make sure we keep the heat as low as possible. With small holes drilled into the skirt of the piston, oil underneath the piston will makes its way through the holes, and lubricate the contact point between the piston and exhaust bridge. Better lubrication means less friction, and less friction means less heat, which is what we want to make sure we don’t have any abnormal wear. Drilling Lubrication Holes Make sure you have the instruction sheet that came with your new piston. This drilling information can also be found there, complete with a visual diagram. Be prepared with your instruction sheet. 1. Install the piston and wrist pin on the connecting rod with one circlip. Make sure the arrow stamped on the dome of the piston is facing the exhaust side of the cylinder. 2. Slide the cylinder over the piston until the cylinder is in its normal position on the crankcase. Temporarily install the piston on the connecting rod and slide the cylinder over the piston. 3. Slowly turn the engine over until the bottom ring groove (or the only ring groove if your piston has only one) on the piston is at the top of the exhaust bridge. You can look through the exhaust port of the cylinder to help know when the piston is in the correct spot. 4. Go through the exhaust port with a pencil and trace a line on the piston skirt for each side of the exhaust bridge. Trace two lines on the piston, one on each side of the exhaust bridge. 5. Once the lines are traced and visible, remove the cylinder and the piston. 6. Start .300” below the bottom ring groove and mark two points .375” apart from each other. Make sure the points are centered horizontally between the two lines you traced. Use the proper measurements to mark 2 points for the holes to be drilled. 7. Drill two holes .060” - .090” in diameter (1/16” or 5/64” drill bit) on your marked points (one hole on each point). Drill holes on your marked points with one of the specified drill bits. 8. Remove all burrs from drilling the lubrication holes. On the inside of the piston, lightly sand with 400-600 grit sand paper. On the outside of the piston, use a ¼” drill bit and twirl it between your fingers over the holes you drilled to break away any edges and imperfections. 9. Wash the cylinder and piston with soap and water, and use compressed air to remove any water and debris. 10. Wipe the cylinder wall with light coat of oil. Whichever 2-cycle oil you normally use is fine. 11. Continue your top end rebuild as normal. This is how your final product should look all cleaned up and deburred. Why doesn't Wiseco pre-drill the holes in the pistons during manufacturing? Some Wiseco two-stroke pistons do come with these lubrication holes pre-drilled. However, there are certain applications that use the same piston across a wide range of model years, but the location of the exhaust ports across those years changes. Therefore, while the piston remains the same, the location of the lubrication holes will vary based the specific year cylinder for certain applications. Want to see the latest in 2-stroke piston technology? Read about the Wiseco 2-Stroke Racer Elite pistons here. See all that Wiseco has to offer for your 2-stroke here.
  5. Rebuilding a top end is a task most two-stroke owners will run into at one point or another. Here, we go over critical steps and key tips to installing a new piston and ring(s) in your two-stroke. Periodically, if you own a two-stroke, there will come a point where you need to rebuild the top end of your engine. Hopefully, this won’t come as a surprise to you and will be part of your planned maintenance schedule versus experiencing an unplanned engine failure. While two-stroke engines are relatively simple mechanical devices, rebuilding them requires knowledge of how they work, attention to detail, and a systematic approach. We’re going to cover numerous tips pertinent to two-stroke top end rebuilds. These tips will be discussed chronologically and will encompass all phases of the build from pre-rebuild prep, to disassembly, through post build. The tips we’re going to share shouldn’t be considered inclusive of everything that has to be done, but are tips that focus on things that are either often overlooked or incredibly important. Let’s get started! Pre-Teardown Diagnosis - Before tearing the engine apart, are there any signs that a specific problem exists? If so, are there any diagnostic tests such as compression or crankcase leak down that are worth performing? Before tearing your engine down, asses the specific problem with you're engine if you're rebuilding due to a running problem. Clean Machine - Take time to thoroughly clean the machine before opening up the engine, especially if you will be servicing the top end without removing the engine from the machine. Service Manual - Performing engine maintenance without an OEM factory service manual is not recommended. Make sure you have a manual for your machine prior to starting work. The manual is the only place you’ll find service limits, torque specs, and other key data. Disassembly Limit Contaminants - Once the cylinder has been removed wrap a clean, lint-free rag around the top of the crankcase. Dirt is one of the leading causes of engine wear, and limiting the opportunity for dirt to enter the crankcase is very important. Keep a lint-free rag at the top of the crankcase at all times while it is open and exposed to potential contaminants. Piston Removal - Easy piston circlip removal can be accomplished by using a pick and needle nose pliers. Insert the pick into the dimple in the piston and behind the circlip. Then use it as a lever and pry the circlip out partially. Once out partially, grab the circlip with needle nose pliers. During this process, be careful not to scratch or mar the wrist pin bore as this will make removing the wrist pin much more difficult. Use tools as needed to aid in circlip removal, but be careful not to mar the pin bore so the wrist pin can be easily removed. The ease of pin removal will be largely dependent on the engine design and condition of the bore. If the pin can be removed by hand, great, if not, light tapping while supporting the rod is permissible. Otherwise, a pin puller should be utilized which can be bought or made. In its simplest form, this can consist of an appropriately sized bolt, nut, and socket. Once the wrist pin has been removed, the piston can be removed from the rod. Hopefully, the wrist pin can be removed by hand once the circlip is out. If not, an appropriately sized socket with some light tapping from the opposite end can help break it loose. Power Valve Disassembly - Prior to taking the power valve system apart, spend some time reviewing the procedure in your service manual. For additional insight into how the components interact, review the exploded views in the service manual and look at part microfiches, which can be found online. Online microfiches can be very helpful to double-check reassembly of the power valve. They can be found on many motorcycle dealer websites. When removing the power valve system, consider laying the components out on a clean rag in an orientation that correlates to how they are installed in the engine. This is a relatively simple thing to do that will help you remember how they are installed later. When it comes to cleaning the components, clean them one at a time or in small batches so that they don’t get mixed up. Lay out all the parts of your power valve assembly as you disassemble it. This will help you keep everything organized, and make sure you get it back together correctly. Inspection Reed Valve - Don’t forget to check the condition of the reed valve petals, cage, and any stopper plates. Most service manuals will detail the acceptable clearance between the petal tips and cage as well as the stopper plate height. Ensure any rubber coatings on the reed cage are in good condition. Inspect all reed valves components thoroughly before reassembling the top end. Any parts showing signs of excessive wear or damage should be replaced. Intake Manifold - Check the intake manifold for cracks. Cracks are more common on older engines, and propagation all the way through the manifold can lead to air leaks. Exhaust Flange - Check the condition of the exhaust flange and ensure that it is not excessively worn. An excessively worn flange will make exhaust gas sealing difficult, hamper performance, and leak the infamous spooge. Power Valve Components - Take a moment to review the condition of all the power valve components. Significant wear can occur over time and lead to performance losses. Rod Small End - Check the small end rod bore for surface defects such as pitting, scratches, and marring. Any severe defects in the bore will necessitate rod replacement. The rod small end is a critical point of inspection. Any damage to the inside surface could affect the small end bearing, leading to a chain of top end problems and potential failure. Sourcing New Components When freshening up the top end in your two-stroke, it’s important to reassemble with quality components. A deglazed and honed or bored and replated cylinder is a critical component to ensuring reliable performance from your new top end. Your local cylinder shop should be able to handle the bore and replate when necessary, and a simple deglazing can be accomplished with a Scotch-Brite pad. Be sure to retain the 45-degree honing mark angle. There are a lot of choices for new pistons from the aftermarket out there, but many people choose to stick to OEM. However, when ordering from the OEM, every individual part must be ordered separately, including the piston, ring, pin, clips, gaskets, etc. Dealing with all these part numbers and chancing forgetting a component can be a pain, and get expensive. ProX two-stroke pistons are manufactured by OEM suppliers, and come with the piston, pin, ring(s), and circlips all under one part number. ProX two-stroke pistons are manufactured by the same OEM-suppliers to exact OE specs. They are available in A, B, C, and D sizing for most applications. ProX pistons come with the piston, ring(s), pin, and clips all in one box. Complete top-end gasket kits can even be ordered under one part number. ProX pistons provide an OEM-replacement option with less hassle and less strain on your wallet. Find ProX pistons for your bike here. Even though ProX pistons are made by OE suppliers, the quality control difference is evident. On the left is a ProX piston for a Honda CR250, and on the right is a brand new piston out of the box from Honda. Which would you choose? Measurements The number of measurements that should be taken throughout the top end rebuild will be discretionary. At ProX, we strive for excellence and err on the side of caution when it comes to engine building, so our builds consist of numerous measurements and inspections prior to reassembly. For us, this ensures a high level of confidence and safeguards against external oversights. We recommend the same to anyone building an engine. Below is a list of measurements that we routinely make when rebuilding a two-stroke top end: Piston ring end gaps Piston-to-cylinder clearance Rod small end diameter Out of these measurements, confirming or adjusting the ring end gaps is by far the most important, followed closely by ensuring the cylinder bore is within spec with respect to diameter, straightness, and roundness. Understandably, some measurements may be difficult for the average home builder to execute, usually due to not having the right equipment, however, a competent shop should be able to assist. Ring end gaps can be checked by installing the ring in the bore without the piston, and using a feeler gauge to find the measurement. Correct ring end gap is listed in the installation instructions that come with a new ProX piston. ProX rings often do not need to be filed as they are pre-gapped, but it's always a good idea to make sure your end gap is within the provided spec. Piston-to-cylinder is another measurement that should be checked before final assembly. For this, use a bore guage and a set of calipers to measure the bore size. Next, grab a set of micrometers and measure the piston. ProX pistons should be measured perpendicular to the wrist pin, a quarter of the way up the piston skirt from the bottom. Subtract your piston size measurement from your bore size, and you have your piston-to-cylinder clearance. ProX pistons come with a chart on the instruction sheet that shows the range your clearance should be in. Measuring piston-to-cylinder clearance is a smart precaution to help ensure you won't run into any unexpected issues with your new top end. A final measurement we recommend taking is the rod small end diameter. This is important because sometimes these can get worn out and create free play for the small end bearing, resulting in damage to the bearing and most likely the entire top end. It can be done using the same method as the bore diameter. Compare your measurement to the acceptable range in your owner's manual. Making sure the diameter of the small end of the rod is within spec is often overlooked, but can prevent a serious top end failure. Prep Work Cylinder Cleaning - Once the cylinder has been deglazed or has come back from replating, it should be cleaned one final time. There is almost always leftover honing grit that will need to be removed. To effectively clean the cylinder, use warm soapy water and a bristle brush, followed by automatic transmission fluid or a similar cleaning solution and a brush or lint-free rag. To check the cleanliness of the cylinder, rub a cotton swab around the bore and look for contaminants. Clean the bore until no contaminants are visible on the cotton swab. Any honing grit that remains in the cylinder will facilitate premature wear of the piston rings. A clean, de-glazed, and properly honed cylinder is key to piston and ring function and longevity. Power Valve Function - Cylinders that have been exchanged or replated should have the power valve system reinstalled ahead of final installation. Often times, excess plating can inhibit power valve movement. To correct this, the excess plating must be carefully removed. On cylinders utilizing blade style power valves, the blade position with respect to the cylinder bore should be checked to ensure the blade does not protrude into the bore. Assemble the power valve before installing the new piston and reinstalling the cylinder. Be sure to check that the power valve is moving as it should, and not protruding into the bore. Piston - It is usually easiest to prepare the new piston as much as possible by installing one of the circlips and the ring pack ahead of joining it to the connecting rod. Unless your service manual dictates which circlip must be installed first, choose the easiest installation orientation. Typically, your dominant hand and preferred work orientation will dictate which side you choose to install the circlip on. It's easier to install one clip and the piston ring(s) before fixing the new piston to the connecting rod. Reference your service manual to determine the correct orientation of the circlip. Usually, the open end of the circlip should be oriented to the 12 or 6 o’clock position. Temporarily install the wrist pin and use it as a backstop so that the circlip is forced to move into its groove. Installing the circlip should be done by hand to limit the chance of deformation. Orient the circlip to the desired position, then push the open ends of the circlip into position first. Be careful not to scratch or mar the wrist pin bore in the process! Once installed, use a pick or screwdriver to confirm the circlip is fully seated and does not rotate. Any circlips that can be rotated must be replaced because they have been compromised and deformed during installation. Make sure to note the orientation of each clip after installation. Some manuals may recommend specific positions depending on the piston, but always be sure the gap is not lined up with or near the dimple(s). Rings - The compression ring(s) will be directional, and the top of the ring is typically denoted by markings near the end gaps. Apply a thin coat of oil to the ring, then carefully work the ring into position, making sure to line up the ring end gaps with the locating pin in each ring groove. Install the ring(s) with the marking(s) facing up, and make sure the ring end gap is lined up with the locating pin in the ring groove. Installation Piston - On the top of the piston, an arrow will be imprinted, which typically denotes the exhaust side of the piston. Consult your service manual to confirm the proper orientation of the arrow and piston. Apply a light amount of assembly lube to the small end bearing and wrist pin bore on the piston, then install the bearing. Align the piston with the small end of the rod, and slide the wrist pin into place. Once again, use the wrist pin as a backstop, then install the remaining circlip into position. Use a pick or screwdriver to confirm it is fully seated and does not rotate. Don't forget to apply some assembly lube to the ring and piston skirts before assembly! Cylinder to Piston - In most applications, a ring compressor is not required to compress the rings and install the piston into the cylinder. Lightly oil the cylinder bore with assembly lube or engine oil, then lube the piston skirt and ring faces. Prior to installing the piston and rings, confirm one final time that the piston ring ends are oriented correctly to their respective locating pins. Once the new piston is installed on the connecting rod, apply some assembly lube to the cylinder wall, and carefully slide the cylinder over the piston. Squeeze the ring with your hand as you slide the cylinder on, simultaneously making sure the ring end gap remains aligned with the locating pin. Position the piston at or near TDC then carefully lower the cylinder bore down onto the piston. Use your fingers to compress the ring(s) and ensure the cylinder bore is square to the piston. Feel how easily the cylinder slides over the piston and rings. The installation of the cylinder should be smooth and offer little resistance. If resistance is felt, stop immediately and assess the ring pack. Occasionally one of the rings may come out of position in its groove and snag the cylinder bore. This typically happens as the ring transitions out of your fingers and into the cylinder bore. Once the cylinder is safely over the ring, slide it all the way on keeping the piston at top dead center (TDC). Don't forget to torque your cylinder and head nuts to the specification listed in your manual. Post Build Torquing - Your cylinder and head nuts should always be torqued to the specifications outlined in your service manual. Double check all the nuts are set at their corresponding specs. Spark Plug - Don’t forget to install a new spark plug and if necessary gap it appropriately. Air Filter - Be sure to install a clean air filter prior to start up. Crankcase Leak Down Test - As one final precautionary measure perform a crankcase leak down test. A crankcase leak down test will help confirm all the seals, gaskets, and joints are sealing as they should. Break-In - When running your new top end for the first time, keep the engine slightly above idle, with slow and mild revs until the engine starts to get too hot to touch. Then, shut the engine off and let it cool until it is warm to the touch. Repeat this process, revving slightly higher and letting the engine get partially hotter each time. After 3 cycles like this, let the engine completely cool, then check all your fluids and re-check the torque on your cylinder and head bolts. Once that is squared away, you can begin break-in runs riding the bike. Make sure to keep the RPMs varied while riding for the first time, not letting the engine lug or sit at idle. A safe bet would be to ride the bike like this for 5 minutes, then 10 minutes, and finally 15 minutes, with adequate cooling in between. This will ensure your piston ring(s) are evenly and properly broken in. It’s never a bad idea to double check your fluids and torque one more time after complete cool down.
  6. Single and dual compression ring two-stroke pistons have been in service for decades, and since their inception, many have wondered if there are advantages to one or the other. If you have been involved with dirt bikes, jet skis, or snowmobiles long enough, you’ve probably noticed different manufacturers have chosen to use one or two compression ring piston designs for their engines. Furthermore, you may have noticed some aftermarket piston companies offer single ring pistons that replace dual ring pistons and vice versa. So, as a consumer, what do these design differences mean, and which one should you choose? Wiseco has been manufacturing two-stroke pistons since 1941. In fact, the company started with two-stroke racing pistons being built in Clyde Wiseman’s garage. There’s no replacement for experience, so we want to take this opportunity to shed some light on the advantages and disadvantages of single and dual compression ring two-stroke pistons designs. Compression Ring Function We’ll start with a quick review of what a compression ring is designed to do. First and foremost, the compression ring provides a seal that allows the piston to compress the air/fuel mixture as the piston travels upward, then during the combustion event itself, it seals the rapidly expanding hot gases that form during the combustion event. The effectiveness of the compression ring seal, in part, has a significant effect on the power and efficiency of the engine. Should the compression ring lose its ability to seal, the amount of trapped air/fuel mass that will be retained during the compression stroke will be significantly reduced, resulting in less power. Similarly, during the combustion event, a compromised ring seal will allow more gases to leak past the ring, often referred to as blow-by, resulting in reduced power. The compression ring, or rings, seals compression so the piston can compress the air/fuel mixture. This plays a critical role in performance, as an improper seal will cause a very poor running condition or not allow the engine to run at all. Heat Transfer The piston rings play a vital role in transferring heat from the combustion process to the engine's liquid or air cooling systems. During combustion, the piston crown absorbs a portion of the extreme temperatures it is exposed to. If left unregulated, the piston would become so hot that it would melt. Thankfully, the piston rings transfer heat from the piston by connecting the piston to cooler parts of the engine such as the cylinder liner. From the liner, the heat finds its way to the water jacket or to the cooling fins on an air-cooled engine. Engine designers optimize the size, shape, position, and the number of rings to influence how the piston and rings transfer heat. In addition to sealing compression, the piston rings play an important role in transferring heat from the piston crown and through the cylinder wall to be dissipated by the cooling system. Otherwise, the piston material would not survive the extreme heat. Conformability The piston ring’s conformability refers to how well it adheres to the shape of the cylinder bore. The conformability of the ring will have a direct effect on how well it seals the mixture and combustion gases as well as transferring heat to the cylinder liner. Factors that influence a ring’s conformability are shape and thickness. In particular, thicker rings will be less conformable than thinner rings because ring thickness has a significant influence on ring stiffness. Thicker rings are generally less conformable, and therefore may not seal compression as effectively. However, too thin of a ring will not transfer heat well enough. It's important to develop a balanced ring that performs both tasks effectively. Wiseco’s Research & Development Manager comments, “Racing applications tend to favor single rings for a lower friction penalty. Also, thinner single rings have better conformability to the cylinder and are less susceptible to flutter at high RPM. Even when specified with lower tension, thinner rings can still have good unit pressure which promotes sealing without a high friction penalty.” Single Versus Two-Ring Applications While many have speculated that certain types of two-stroke powered vehicles—whether it be ATVs, dirt bikes, jet skis, or snowmobiles—need one or two ring pistons, it isn’t so much the specific vehicle application that drives the selection, but more the intended use for the vehicle. The big differentiator is whether the vehicle’s intended use is for racing or not. Two-stroke engines designed and developed for racing typically utilize single ring pistons. When designers optimize an engine for racing and select a single compression ring design, several advantages and disadvantages arise when compared to a two-compression ring design. Let’s take a look at the pros and cons of each. A single-ring design is common among Wiseco pistons that are designed for racing and high-performance engines, such as the Racer Elite piston. Single Ring Pros: ● Lowest friction design translating to increased power ● Lowest weight design contributing to fast revving Single Ring Cons: ● Potentially less longevity due to heat dispersion Two-rings designs are popular among riders that prefer added performance durability at the expense of a little performance. However, some big-bore two-stroke applications benefit more overall from a two-ring design. Two Ring Pros: Improved heat transfer due to the addition of the second ring Engine performance durability due to 2nd ring’s ability to seal if first ring’s seal becomes compromised Two Ring Cons: Increased friction and weight More susceptible to ring flutter at high RPM “Since a good portion of the piston heat is transferred from the piston to the ring and then to the cooler cylinder wall, one advantage of a 2-ring system is that the second ring would provide a second heat transfer path,” adds Dave Fussner on the topic of two-ring designs. The last point worth mentioning is that racing piston ring applications are optimized for excellent ring control at high RPM. A condition called “flutter” occurs when a ring becomes unseated from the piston’s ring groove. Flutter occurs around top dead center as the piston transitions from upward motion to downward motion, in part, because the inertia of the ring, which is a function of the ring’s mass, overcomes the gas pressure, pushing the ring against the bottom of the ring groove. When this happens, the ring’s sealing ability is compromised, and engine performance degrades both in terms of performance and durability. Engine designers combat flutter by optimizing the ring's weight so that the ring’s inertia forces cannot induce flutter within the intended RPM range. This is why in many single ring applications the rings are relatively thin. Single-ring designs are less susceptible to flutter because there is less ring mass changing direction as the piston begins its return from TDC. These are the general and major factors that drive single ring and two-ring designs in two-stroke pistons. The intended use of the vehicle usually drives ring selection, not the vehicle type itself. If you are considering a switch from a single ring to a two ring piston, ultimately, how you intend to use your machine should dictate whether the decision is sensible or not.
×