Jump to content

Search the Community

Showing results for tags 'TopEnd'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Dirt Bikes
    • General Dirt Bike Forums
    • Make / Model Specific
    • Dirt Bike Technical Forums
    • Special Interest Forums
    • Dirt Bike Regional Discussion
  • General
  • ATV / UTV
  • Inside TT
  • ThumperTalk Clubs FAQ & Help's FAQ/Help & Discussion
  • Chadwick, Missouri: Information & Riding's Topics
  • So Cal Flattrack's Club Forum
  • Thumperjunkies - Ottawa & Eastern Ontario Riders's Discussion
  • Jersey MX and offroad's Places you ride
  • Jersey MX and offroad's Discussion
  • SE Ohio Riders's Club Discussion
  • NorCal Trail Riders's Topics
  • Northern Nevada Roaming Bastards's Discussion
  • North Texas Enduro Riders's Topics
  • Twistin it in PHX's Introduce yourself!
  • Twistin it in PHX's Discussion
  • So-Cal Track and Trail's 1st club ride coming soon...
  • Moto TnT Track & Trail's Moto Tnt Racing Questions
  • Moto TnT Track & Trail's Rider's Forum
  • Dualspot Riders Orange County So~CaL's Club Discussion
  • Chester County PA DS/Adventure's Im here
  • Chester County PA DS/Adventure's Ride Dates & Times
  • Niagara region's Club Discussion
  • Walker Valley Single Track Riders's Unanounced ride(s) recap(s)
  • Walker Valley Single Track Riders's Supplements & recovery aids
  • Walker Valley Single Track Riders's Bikes maintenance & restoration
  • Walker Valley Single Track Riders's Safety gear & apparel
  • Walker Valley Single Track Riders's General
  • Walker Valley Single Track Riders's Riding technique
  • Sacramento Area Trail Riders's Club Discussion
  • Sacramento Area Trail Riders's Info from another club
  • NC woods riders.'s Club Discussion
  • Colorado US Route 50 Rides's Club Discussion
  • Middle GA Off-Road & Trails's Club Discussion
  • WNY Dual Sport Trail Riders's General Discussion's
  • SoCal JUST RIGHT riding club's SUNDAY 10.13
  • OREGON Riders Club's Club Discussion
  • South Texas Dirt riders's Topics
  • PNW Trail Maintenance Club's Trail equipment and how to carry it
  • PNW Trail Maintenance Club's General Discussion
  • PNW Trail Maintenance Club's Introduce Yourself
  • New England riders's Events
  • SC Dirt Riders's Topics
  • Club RMX's Photos and videos
  • Club RMX's Engine & Engine tuning
  • Club RMX's Chassis, Suspension, & tuning
  • Club RMX's Electrical and electronics
  • Club RMX's Body, fender, & Graphics
  • Club RMX's Build projects
  • Club RMX's Everything else
  • Club RMX's Classifieds
  • North GA Trail Riders's Topics
  • Virginia Supermoto's Club Discussion
  • Kentucky Trail Riders Club's Topics
  • ADK ADV's Notes

Categories

  • Powersports Gear & Apparel
  • Universal Parts & Accessories
  • Parts & Acc. - Japanese Bikes
    • Honda Parts & Accessories
    • Kawasaki Parts & Accessories
    • Suzuki Parts & Accessories
    • Yamaha Parts & Accessories
  • Parts & Acc. - Euro Bikes
    • Beta Parts & Accessories
    • Husqvarna Parts & Accessories
    • KTM Parts & Accessories
    • Other Euro Parts & Accessories
  • Motorcycles
    • Off-Road Motorcycles
    • Dual Sport Motorcycles
    • Street Motorcycles

Products Categories

Vehicles Categories

Garages

Blogs

There are no results to display.

There are no results to display.

Calendars

  • ThumperTalk Clubs FAQ & Help's Club Calendar
  • Chadwick, Missouri: Information & Riding's Events
  • So Cal Flattrack's Club Calendar
  • So Cal Flattrack's Events
  • Thumperjunkies - Ottawa & Eastern Ontario Riders's Club Calendar
  • Thumperjunkies - Ottawa & Eastern Ontario Riders's Events
  • SE Ohio Riders's Events Calendar
  • NorCal Trail Riders's Ride & Event calendar
  • Northern Nevada Roaming Bastards's Stuff that happens on a particular date
  • Central Washington riders's Events
  • Dualspot Riders Orange County So~CaL's Events Calendar
  • Niagara region's Club Events Calendar
  • Walker Valley Single Track Riders's I love Mondays trail ride
  • Sacramento Area Trail Riders's Events Calendar
  • Sacramento Area Trail Riders's First round of Hollister 2020
  • NC woods riders.'s Club Calendar
  • Colorado US Route 50 Rides's Club Calendar
  • Middle GA Off-Road & Trails's Club Calendar
  • OREGON Riders Club's Club Calendar
  • PNW Trail Maintenance Club's Calendar
  • North County San Diego - DirtbikesWithDad.com's 2020 Calendar
  • North GA Trail Riders's Ride Calendar
  • Virginia Supermoto's Club Calendar
  • Kentucky Trail Riders Club's Events

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


AIM


MSN


Website URL


ICQ


Yahoo


Jabber


Skype


Interests

Found 35 results

  1. Hi all, I am needing some help with my 2003 yz250, i have posted a thread up a couple weeks ago about my bike bogging and having no power. I've listened to everyone's opinions on what is going on and have tried to fix it. Now, i'm needing some help with the cylinder and head, jets, and the power valve. 1. I am going to replace the reeds with power reeds, Will i have to rejet or anything? or can i just throw them in and ride? I'm doing a fresh top end so want the bike to be running good when i first start it. 2. I bought new jets cause the old ones were blocked. The new ones are the same size as the old ones, i can just throw them in and the bike will run the same as if the old ones were still in? or will i need to mess around with something? 3. Is the cylinder head in good shape or bad? Is the cylinder in bad shape? If so, what is the cheapest way for now and for future rebuilds to fix it? What type of cylinder is it? Sleeved?, nikasil? 4. The power valve looks like it has alot of oil/carbon in there, how do i clean it and what do i clean it with? As seen in video, when i pull the power valve to me it stays like that, i thought it is supposed to go back in?
  2. Hello Folks. Well, I've gone and done it. I decided to pick up another neglected, orphan bike to restore and play with for at least a few seasons. I came across a very inexpensive (I'll leave that ambiguous) 1997 CR250R that was calling my name. I knew the top-end was toast, but as with any new project, I had no way to know how far gone things would be until I took it home and unbuttoned the mill. So, I'll share the bad news, the good news and then ask a few questions while I wait for a manual to arrive. Looks like the bottom ring decided to eat itself. About 1 inch of it broke off, caught on the main intake port, dug a HUGE scar in the piston, nicked the top of two ports, then spent time salt-and-peppering the top of the piston and the head before exiting the motor. Here are the pictures of the damage...first, the scar from the ring tearing down the side of the piston... Then what looks like a seize-point or serious scuff, with more shrapnel damage... ...Here's what the top of the piston ended up as... ...and the matching head "acne"... Now, here are the pics of the cylinder. The first two are from the underside, looking up the bore. The nicks are obvious. These two are looking from the top down the bore. And now...the questions. First, is the head salvageable? Can that be cleaned up well enough without machine work that will cost more than a new head? Second, the Cylinder. I was glad to see that there was no scoring or damage to the cylinder walls themselves. However, the damage near those nicks has me fearing. I know I had old iron-bore cylinders with worse damage that were smoothed out by hand, but I''m not sure I can safely pull this off in this case. Is this garage-repairable, or am I going to be forced to weld up, re-plate and bore the cylinder? I know that "the best thing to do would be...", but I'm asking what I can do...not necessarily what I should. Will those damage points, if smoothed, result in rings prematurely hanging/breaking on the next top-end? Thanks for any input you folks can provide.
  3. Proper engine break-in is equally as important as a proper rebuild. Here, we'll go over a checklist to make your build will last, as well as a step-by-step break-in process. Putting in the time and money to rebuild your motorcycle engine is both a critical job and a prideful accomplishment. The feeling of an engine failure right after a rebuild is a sinking one, and will most likely stir up a mixture of frustration and disappointment. We want to help as many people as we can avoid that feeling. So, we've put together a review checklist for your rebuild, followed by a general engine break-in procedure, because your motorcycle should bring joy and fun to your life, not take tufts of hair out of your head. We'll start with a quick review on the motorcycle top end rebuild. Be sure these critical steps and precautions have been taken. If you find any concerning discrepancies, it's worth it to pull back apart and double check. Be sure that you have proper piston to cylinder clearance. Recently, a cylinder was bored with requested .0035” clearance. This machine shop has been in the area for over 30 years. When complete, it looked like it was tighter. He slipped the piston through the cylinder a few times and said, "It's okay." He was asked to check again, which he refused, and said that it was correct, and that he was too busy. Back in the Brew Bikes shop, it was double-checked, and clearance was .0015”. Yes, way too tight. Don’t just take someone’s word that clearance is correct, always double check it! Always double check your piston-to-wall clearance. Was the honing of the cylinder properly done? Honing is required to be done after boring, and if the cylinder was not bored, it still is needed to deglaze the cylinder for proper ring break-in. Different honing tools are better used for different applications, with common tools being brush hones and flex hones. Safe grits and hone materials depend on the cylinder finish, so check your manual or with the cylinder shop for a recommendation. Be sure that the crosshatch is at 45 degrees. The proper crosshatch will retain the proper amount of lubricating oil while allowing the rings and piston to break-in. Too little of crosshatch or too much will not allow the rings to break-in correctly and never get the proper sealing they were designed for. Read our full guide to cylinder prep. After proper honing and deglazing, your cylinder wall should have a consistent, 45 degree crosshatch. If the bike is a 2 stroke don’t forget to chamfer the ports. If it has a bridge in the exhaust port, most pistons require this area to be relieved. READ the piston specs, and if you don’t understand, be sure to reach out to Wiseco for specifications. Read our guide to relieving the exhaust bridge in 2-stroke cylinders. A critical step in 2-stroke cylinder prep is port edge relief and exhaust bridge relief. This will help ensure smooth piston and ring operation, and combat accelerated ring wear. Be certain that the ring gap is within specification. Don’t assume it is correct, check it. Always double check your ring end gap. With your compression ring in the cylinder, measure the end gap with a feeler gauge to ensure it's within the spec included in your piston instructions. Proper cleaning of the cylinder. Before you start cleaning make sure the gasket areas are clean with no residue of gasket or sealers. First, use a cleaning solvent with a brush and then again with a rag. This is not enough, and you will need to clean with dish soap and water. Using a clean rag you will be amazed on how much grit from the honing is still in the cylinder. Be sure to clean the piston also. Thoroughly cleaning your cylinder for a rebuild is critical. Be sure all old gasket material is removed, and use a 2-step cleaning process of solvent with a brush and rag, followed by soap and water. When the cylinder is clean and dry, you should be able to wipe the cylinder wall with a clean rag and not see any honing material residue. Then before assembly, use plenty of assembly lube on the cylinder and the piston. Don’t forget to lube the piston pin and bearing along with the rings. Assembly lube on the piston, rings, cylinder, pin, and bearing is important for proper break-in. Many rings have a topside for proper sealing. Double check this and be sure the proper ring is on the proper landing on the piston. Again, read the instructions that came with the piston. Piston ring markings vary, but the marking should always face up when installed on the piston. The gaskets and quality play an important part of engine rebuilding. If a gasket is thicker than the original, it could result in a loss of power. Worse yet, a gasket thinner than the original will result in less deck height (piston to head clearance). This reduced clearance may result the piston to come in contact of the head causing permanent damage. After placing the gaskets, be sure while assembling the piston in the cylinder that the ring gaps are in proper placement. Check your engine manual for proper placement of the piston gaps. Then, install the head. Many motorcycle manufacturers have a desired head nut tightening sequence. Refer to their procedures while doing this. Most companies give the head nut torque rating with the washers, nuts and studs being clean and dry. That means if you use oil or a thread locking compound the studs will be over-stressed due to the over-tightening of the head nuts. Engines have been damaged by this. Now you know, follow what the engine manufacturer recommends! Regardless of the type of motorcycle engine you're working on, there should be a tightening sequence and torque spec for the head nuts. Pay close attention to the specs in the manual, as these are critical to prevent damage and for proper operation. Use the proper engine oil and fill to the proper level. The fuel you use should be fresh and of the proper octane. If your engine is a 2 stroke, mix to the proper fuel/oil ratio. For just about any 2-stroke, whether vintage or a newer, a 32:1 fuel/oil mixture is very common, but check your manual for the recommended ratio. Not only is it important for piston lubrication, but also for the crank bearings and seals. After all this work has been done, and you feel confident with the rebuild, what else can go wrong? PROPER ENGINE BREAK-IN! So many mistakes can happen while breaking in the piston and rings, resulting in rings never properly sealing or/and piston galling. Many builders have their own procedures, but most all do heat cycling for breaking in engines. Before we get into it, please note that this is just one of many methods that work well for engine break-in. Many people have many different effective methods, this is just one example that has worked well for us. Use this break-in procedure as a guideline for your next fresh top end: It's important to ask yourself if the rebuilt engine is still using the same carburetor, air cleaner, exhaust system, cam, compression, or if a 2-stroke, the same port work configuration? Any changes can result in air/fuel mixtures to be either too rich or too lean, resulting in engine damage. If your engine is fuel injected and in good working order, the ECU and O2 sensor should keep the air/fuel mixture correct. If you have access to an air/fuel meter, or if a 2-stroke, an EGT (Exhaust Gas Temperature) gauge, check the air/fuel mixture. Even with these tools, spark plug readings are still recommended. Spark plug readings are a sure-fire way of knowing if your engine is running too lean or too rich. We'll get into more detail in a later article, but generally the plug will look white when it's too lean, and dark brown or black and wet when too rich. At first start up, keep the engine just above idle and give it a few revs up and down. This power on and power off RPM breaks in the piston and rings evenly on the intake and exhaust sides. If air cooled, once the engine builds up heat where it becomes too hot to touch, shut the engine off. If water-cooled, once the engine coolant starts rising in temperature, shut the engine off. This initial warm up takes just a couple minutes. Now wait a few minutes until the engine is slightly warm to the touch, repeat #2, letting the engine get slightly hotter. Be sure to keep the engine RPMs above normal idle and keep the RPMs going up and down slowly. Let it cool again till it is slightly warm to the touch. This time, start and run longer until the engine gets near operating temperature. If air cooled, be sure you have a fan pushing air from the front. You now can rev the RPMs up a little higher, being sure not to hold it at a sustained RPM, but revving it up and down. Let the engine cool completely. Check all fluid levels to be sure there is no loss of engine lubricant, or, if water-cooled, engine coolant. After engine is cool, do a plug reading to be sure it is not running lean. Because the engine has run a few heat cycles, the gaskets may have compressed. It is VERY IMPORTANT to be sure engine is totally cooled down, and then check the torque of the cylinder head nuts. Most times the cycling head nuts will need some re-tightening. DON’T over-tighten; just tighten to manufacturers’ specification as you did when assembling the engine. Next, warm up the engine for a couple minutes as you did in the other procedures. Ride the bike, revving the engine up to normal riding RPM. Be sure NOT to keep the RPM too low and don’t lug the engine. These low RPM’s actually puts much more stress on the engine parts. If this is a dirt bike, running on a track is best due to the up and down RPMs the engine will experience. Don’t be afraid to run it normally. If this is a road bike, a curvy road is best due to the RPMs going up and down, this is a must! Don’t lug the engine and don’t go on an open highway that keeps the engine at a sustained RPM. This first initial ride will only be about 5 minutes. Let the engine cool till you can touch the engine. Follow the same procedure as above, but this time running for 10 minutes. This will be your last break-in run. Follow the above procedure and run for 15 minutes. Now is the time to let the engine totally cool down again. Check the fluids as you did before after the engine has completely cooled down, and do another spark plug reading. It is now time to do another check of the cylinder head nuts for proper torque. Sometimes no additional tightening is needed, but don’t be alarmed if you need to, because this is normal Check all your fluids once more after the engine cools, inclduing coolant and oil level. At this time, the rings and piston should be broken in. Go out and ride it. The first few times, just be sure not to get the engine overheated, but your ride times are not restricted. It never hurts to do another spark plug reading and double-check the head nuts after your first long ride. Enjoy your rides, and be safe!
  4. OK here goes... Picked up an 04 200 EXC few months back, needed some work to say the least, wont go into detail of all the things i've fixed on the bike just the current and most present issue I cant seem to fix... it is smoking IE blue smoke/lots of splooge to the point that at the end of a few hour's ride, it's out the tail pipe, running down the back and dripping onto the swing arm/rear break caliper and blue smoking quite a bit. When I first got it, it smoked more and smelled like shit. So first things first went to the carb, I live on the Oregon coast (elevation/temp reference) it's old dirty/stained but inside looks good, came with jetting pilot-45, main-178 needle: no idea what brand guessing stock in the 3rd clip, adjusted the float height due to it leaking gas when bike was upright no tilt with the gas on, Bought JD jet kit and running pilot-45, Main-185 and Needle is blue 3rd clip (JD's recommend specs for my bike @ my attitude). I have also replaced my Inner crankcase seal twice (First time I thought I messed up the O-ring so redid to make sure). I've rebuilt the top end/new piston (same thing) cleaned the PV, NOTE HERE that the PV has some issues, it seems to work fine but the screw that goes on top of the cylinder, down into the PV/flap would not come out preventing me from removing the flap to clean it, however it move's/ function's correctly, and has minimum clearance on both sides. One of the PV cover bolts that also works at the exhaust spring holder, was over torqued at some point (impact driver prob), or a result in a hard impact, the hole the bolt goes into is flailed/jared open a bit, not bad, not in the way of any function/ PV Gearing/hinge, it is not needed for that area to be air tight as their is also a breather that goes out of the PV so will not result in an "air leak" or loss in Top end PSI.... anyway... it's still smoking.... quite a bit.. now the bike itself rides fine I feel, the carb does puke gas when tilted over slightly/ hard to start (kick start) after flooded (like all bikes tho) I don't have any stalling/low idle issues outside of user error on clutch control. Honestly outside of it smoking as much as it does I would think nothing is wrong with it.. I have also tried raising the needle Clip to 2nd clip and it changed nothing at all, not even feel of the bike/response and have a new Spark plug I have yet to put on the bike. I have also "compromised" the crankcase Gasket (new one in the mail) while I was putting the Crankcase back on but that should do nothing with the exhaust just a little gear oil leak not relevant but throwing it out there. So I am at a loss... I've been toying with the idea of getting a Lectron carb... However... would hate to drop $400~$500 and the issue still persist, if it's a jetting/carb/float issue that would fix it and improve MPH/fuel consumption Or something with the PV? but I don't see the PV causing that much smoke/sploogee... I've ridden the bike normally/hard and nothing's happened but I don't want to keep pushing it and possibly clip the bike. Any ideas? "Oh help me 2 stroke community you're my only hope"
  5. Hello, I just rebuilt a 2001 ktm 125sx and I can't get it started. compression is correct, spark is good, timing is correct, and decking is correct. I know fuel is entering the cylinder because when I try to kick it over I have fuel on the plug. I can't figure it out for the life of me why the bike will not start? any suggestions? thanks!
  6. Hey everyone. I was out riding and seized my engine On my 2001 Suzuki rm250. I poured oil down into the cylinder and it freed up when I started it up it sounded Terrible. I’d assume it needs the engine rebuilt but I’m pretty new to 2 stroke dirt bikes and I don’t want to pay the $2500 a shop quoted me at on how much they would charge to fix it. My main question is what needs to be fixed and what I need to order. Does the top end need rebuilt and do I just have to buy one of those kits? Thanks everyone
  7. This is my first top end rebuild. I just got the head off, cylinder and piston removed. There's definitely some wear on one side of the piston and cylinder. I'm replacing the piston, rings and head with a VHM. Should I be concerned about the wear in the cylinder? If so, would scotch bright suffice? Also, I gave the bike a good cleaning prior, but as more and more parts came off, it was apparent that things were still a little dirty. Can I clean the cylinder prior to putting it all back together. Lastly, the cylinder bolts were pretty corroded; well at least 3 out of the 4 were. Should I wire brush these? It'll be hard to keep junk from falling into the bottom end... The bike is a 2006 RM250 Thanks
  8. I have a sikk-MX trail bike. And tried to extract a snapped bolt....snapped the easy out inside the bolt casing/shell(I drilled a hole through said stick bolt). I cant figure out which 52.4mm cylinder head to replace it with. Does anyone know? I also cant figure out the headlight wiring to my tusk headlight...if anyone has any schematics for that...please help. And does anyone know what larger/largest size tire or rim will fit on these bikes? Cuz these tires are pathetic.
  9. Hey TT! You all know me as that one annoying 15 year old kid that rides dirt bikes on the street for YouTube content. Well I bought a 2002 YZ 125 that had no compression, and I got it for cheap. So, today I fixed the float and went for a ride, but felt like enough was enough. I called my dad to come and help me take off the top end, and so we did. Be aware that I am a 15 year old kid, that has no experience with top ends, and am basing everything off one 17 minute YouTube video that was watched two weeks ago. Anyways, here's how it looks. Now here's my question... What size will I need to purchase? It is a 53.96 currently. Also, will I have to bore it out or is it good? Posted pics of the cyinder too. OR, I can do the 144cc kit. Eric Gorr is charging $450-$500 which is too much, any cheaper alternatives? Gary, where are you?? Two Stroke YZ Doc I need your help man! Thanks!
  10. Single and dual compression ring two-stroke pistons have been in service for decades, and since their inception, many have wondered if there are advantages to one or the other. If you have been involved with dirt bikes, jet skis, or snowmobiles long enough, you’ve probably noticed different manufacturers have chosen to use one or two compression ring piston designs for their engines. Furthermore, you may have noticed some aftermarket piston companies offer single ring pistons that replace dual ring pistons and vice versa. So, as a consumer, what do these design differences mean, and which one should you choose? Wiseco has been manufacturing two-stroke pistons since 1941. In fact, the company started with two-stroke racing pistons being built in Clyde Wiseman’s garage. There’s no replacement for experience, so we want to take this opportunity to shed some light on the advantages and disadvantages of single and dual compression ring two-stroke pistons designs. Compression Ring Function We’ll start with a quick review of what a compression ring is designed to do. First and foremost, the compression ring provides a seal that allows the piston to compress the air/fuel mixture as the piston travels upward, then during the combustion event itself, it seals the rapidly expanding hot gases that form during the combustion event. The effectiveness of the compression ring seal, in part, has a significant effect on the power and efficiency of the engine. Should the compression ring lose its ability to seal, the amount of trapped air/fuel mass that will be retained during the compression stroke will be significantly reduced, resulting in less power. Similarly, during the combustion event, a compromised ring seal will allow more gases to leak past the ring, often referred to as blow-by, resulting in reduced power. The compression ring, or rings, seals compression so the piston can compress the air/fuel mixture. This plays a critical role in performance, as an improper seal will cause a very poor running condition or not allow the engine to run at all. Heat Transfer The piston rings play a vital role in transferring heat from the combustion process to the engine's liquid or air cooling systems. During combustion, the piston crown absorbs a portion of the extreme temperatures it is exposed to. If left unregulated, the piston would become so hot that it would melt. Thankfully, the piston rings transfer heat from the piston by connecting the piston to cooler parts of the engine such as the cylinder liner. From the liner, the heat finds its way to the water jacket or to the cooling fins on an air-cooled engine. Engine designers optimize the size, shape, position, and the number of rings to influence how the piston and rings transfer heat. In addition to sealing compression, the piston rings play an important role in transferring heat from the piston crown and through the cylinder wall to be dissipated by the cooling system. Otherwise, the piston material would not survive the extreme heat. Conformability The piston ring’s conformability refers to how well it adheres to the shape of the cylinder bore. The conformability of the ring will have a direct effect on how well it seals the mixture and combustion gases as well as transferring heat to the cylinder liner. Factors that influence a ring’s conformability are shape and thickness. In particular, thicker rings will be less conformable than thinner rings because ring thickness has a significant influence on ring stiffness. Thicker rings are generally less conformable, and therefore may not seal compression as effectively. However, too thin of a ring will not transfer heat well enough. It's important to develop a balanced ring that performs both tasks effectively. Wiseco’s Research & Development Manager comments, “Racing applications tend to favor single rings for a lower friction penalty. Also, thinner single rings have better conformability to the cylinder and are less susceptible to flutter at high RPM. Even when specified with lower tension, thinner rings can still have good unit pressure which promotes sealing without a high friction penalty.” Single Versus Two-Ring Applications While many have speculated that certain types of two-stroke powered vehicles—whether it be ATVs, dirt bikes, jet skis, or snowmobiles—need one or two ring pistons, it isn’t so much the specific vehicle application that drives the selection, but more the intended use for the vehicle. The big differentiator is whether the vehicle’s intended use is for racing or not. Two-stroke engines designed and developed for racing typically utilize single ring pistons. When designers optimize an engine for racing and select a single compression ring design, several advantages and disadvantages arise when compared to a two-compression ring design. Let’s take a look at the pros and cons of each. A single-ring design is common among Wiseco pistons that are designed for racing and high-performance engines, such as the Racer Elite piston. Single Ring Pros: ● Lowest friction design translating to increased power ● Lowest weight design contributing to fast revving Single Ring Cons: ● Potentially less longevity due to heat dispersion Two-rings designs are popular among riders that prefer added performance durability at the expense of a little performance. However, some big-bore two-stroke applications benefit more overall from a two-ring design. Two Ring Pros: Improved heat transfer due to the addition of the second ring Engine performance durability due to 2nd ring’s ability to seal if first ring’s seal becomes compromised Two Ring Cons: Increased friction and weight More susceptible to ring flutter at high RPM “Since a good portion of the piston heat is transferred from the piston to the ring and then to the cooler cylinder wall, one advantage of a 2-ring system is that the second ring would provide a second heat transfer path,” adds Dave Fussner on the topic of two-ring designs. The last point worth mentioning is that racing piston ring applications are optimized for excellent ring control at high RPM. A condition called “flutter” occurs when a ring becomes unseated from the piston’s ring groove. Flutter occurs around top dead center as the piston transitions from upward motion to downward motion, in part, because the inertia of the ring, which is a function of the ring’s mass, overcomes the gas pressure, pushing the ring against the bottom of the ring groove. When this happens, the ring’s sealing ability is compromised, and engine performance degrades both in terms of performance and durability. Engine designers combat flutter by optimizing the ring's weight so that the ring’s inertia forces cannot induce flutter within the intended RPM range. This is why in many single ring applications the rings are relatively thin. Single-ring designs are less susceptible to flutter because there is less ring mass changing direction as the piston begins its return from TDC. These are the general and major factors that drive single ring and two-ring designs in two-stroke pistons. The intended use of the vehicle usually drives ring selection, not the vehicle type itself. If you are considering a switch from a single ring to a two ring piston, ultimately, how you intend to use your machine should dictate whether the decision is sensible or not.
  11. Rebuilding a top end is a task most two-stroke owners will run into at one point or another. Here, we go over critical steps and key tips to installing a new piston and ring(s) in your two-stroke. Periodically, if you own a two-stroke, there will come a point where you need to rebuild the top end of your engine. Hopefully, this won’t come as a surprise to you and will be part of your planned maintenance schedule versus experiencing an unplanned engine failure. While two-stroke engines are relatively simple mechanical devices, rebuilding them requires knowledge of how they work, attention to detail, and a systematic approach. We’re going to cover numerous tips pertinent to two-stroke top end rebuilds. These tips will be discussed chronologically and will encompass all phases of the build from pre-rebuild prep, to disassembly, through post build. The tips we’re going to share shouldn’t be considered inclusive of everything that has to be done, but are tips that focus on things that are either often overlooked or incredibly important. Let’s get started! Pre-Teardown Diagnosis - Before tearing the engine apart, are there any signs that a specific problem exists? If so, are there any diagnostic tests such as compression or crankcase leak down that are worth performing? Before tearing your engine down, asses the specific problem with you're engine if you're rebuilding due to a running problem. Clean Machine - Take time to thoroughly clean the machine before opening up the engine, especially if you will be servicing the top end without removing the engine from the machine. Service Manual - Performing engine maintenance without an OEM factory service manual is not recommended. Make sure you have a manual for your machine prior to starting work. The manual is the only place you’ll find service limits, torque specs, and other key data. Disassembly Limit Contaminants - Once the cylinder has been removed wrap a clean, lint-free rag around the top of the crankcase. Dirt is one of the leading causes of engine wear, and limiting the opportunity for dirt to enter the crankcase is very important. Keep a lint-free rag at the top of the crankcase at all times while it is open and exposed to potential contaminants. Piston Removal - Easy piston circlip removal can be accomplished by using a pick and needle nose pliers. Insert the pick into the dimple in the piston and behind the circlip. Then use it as a lever and pry the circlip out partially. Once out partially, grab the circlip with needle nose pliers. During this process, be careful not to scratch or mar the wrist pin bore as this will make removing the wrist pin much more difficult. Use tools as needed to aid in circlip removal, but be careful not to mar the pin bore so the wrist pin can be easily removed. The ease of pin removal will be largely dependent on the engine design and condition of the bore. If the pin can be removed by hand, great, if not, light tapping while supporting the rod is permissible. Otherwise, a pin puller should be utilized which can be bought or made. In its simplest form, this can consist of an appropriately sized bolt, nut, and socket. Once the wrist pin has been removed, the piston can be removed from the rod. Hopefully, the wrist pin can be removed by hand once the circlip is out. If not, an appropriately sized socket with some light tapping from the opposite end can help break it loose. Power Valve Disassembly - Prior to taking the power valve system apart, spend some time reviewing the procedure in your service manual. For additional insight into how the components interact, review the exploded views in the service manual and look at part microfiches, which can be found online. Online microfiches can be very helpful to double-check reassembly of the power valve. They can be found on many motorcycle dealer websites. When removing the power valve system, consider laying the components out on a clean rag in an orientation that correlates to how they are installed in the engine. This is a relatively simple thing to do that will help you remember how they are installed later. When it comes to cleaning the components, clean them one at a time or in small batches so that they don’t get mixed up. Lay out all the parts of your power valve assembly as you disassemble it. This will help you keep everything organized, and make sure you get it back together correctly. Inspection Reed Valve - Don’t forget to check the condition of the reed valve petals, cage, and any stopper plates. Most service manuals will detail the acceptable clearance between the petal tips and cage as well as the stopper plate height. Ensure any rubber coatings on the reed cage are in good condition. Inspect all reed valves components thoroughly before reassembling the top end. Any parts showing signs of excessive wear or damage should be replaced. Intake Manifold - Check the intake manifold for cracks. Cracks are more common on older engines, and propagation all the way through the manifold can lead to air leaks. Exhaust Flange - Check the condition of the exhaust flange and ensure that it is not excessively worn. An excessively worn flange will make exhaust gas sealing difficult, hamper performance, and leak the infamous spooge. Power Valve Components - Take a moment to review the condition of all the power valve components. Significant wear can occur over time and lead to performance losses. Rod Small End - Check the small end rod bore for surface defects such as pitting, scratches, and marring. Any severe defects in the bore will necessitate rod replacement. The rod small end is a critical point of inspection. Any damage to the inside surface could affect the small end bearing, leading to a chain of top end problems and potential failure. Sourcing New Components When freshening up the top end in your two-stroke, it’s important to reassemble with quality components. A deglazed and honed or bored and replated cylinder is a critical component to ensuring reliable performance from your new top end. Your local cylinder shop should be able to handle the bore and replate when necessary, and a simple deglazing can be accomplished with a Scotch-Brite pad. Be sure to retain the 45-degree honing mark angle. There are a lot of choices for new pistons from the aftermarket out there, but many people choose to stick to OEM. However, when ordering from the OEM, every individual part must be ordered separately, including the piston, ring, pin, clips, gaskets, etc. Dealing with all these part numbers and chancing forgetting a component can be a pain, and get expensive. ProX two-stroke pistons are manufactured by OEM suppliers, and come with the piston, pin, ring(s), and circlips all under one part number. ProX two-stroke pistons are manufactured by the same OEM-suppliers to exact OE specs. They are available in A, B, C, and D sizing for most applications. ProX pistons come with the piston, ring(s), pin, and clips all in one box. Complete top-end gasket kits can even be ordered under one part number. ProX pistons provide an OEM-replacement option with less hassle and less strain on your wallet. Find ProX pistons for your bike here. Even though ProX pistons are made by OE suppliers, the quality control difference is evident. On the left is a ProX piston for a Honda CR250, and on the right is a brand new piston out of the box from Honda. Which would you choose? Measurements The number of measurements that should be taken throughout the top end rebuild will be discretionary. At ProX, we strive for excellence and err on the side of caution when it comes to engine building, so our builds consist of numerous measurements and inspections prior to reassembly. For us, this ensures a high level of confidence and safeguards against external oversights. We recommend the same to anyone building an engine. Below is a list of measurements that we routinely make when rebuilding a two-stroke top end: Piston ring end gaps Piston-to-cylinder clearance Rod small end diameter Out of these measurements, confirming or adjusting the ring end gaps is by far the most important, followed closely by ensuring the cylinder bore is within spec with respect to diameter, straightness, and roundness. Understandably, some measurements may be difficult for the average home builder to execute, usually due to not having the right equipment, however, a competent shop should be able to assist. Ring end gaps can be checked by installing the ring in the bore without the piston, and using a feeler gauge to find the measurement. Correct ring end gap is listed in the installation instructions that come with a new ProX piston. ProX rings often do not need to be filed as they are pre-gapped, but it's always a good idea to make sure your end gap is within the provided spec. Piston-to-cylinder is another measurement that should be checked before final assembly. For this, use a bore guage and a set of calipers to measure the bore size. Next, grab a set of micrometers and measure the piston. ProX pistons should be measured perpendicular to the wrist pin, a quarter of the way up the piston skirt from the bottom. Subtract your piston size measurement from your bore size, and you have your piston-to-cylinder clearance. ProX pistons come with a chart on the instruction sheet that shows the range your clearance should be in. Measuring piston-to-cylinder clearance is a smart precaution to help ensure you won't run into any unexpected issues with your new top end. A final measurement we recommend taking is the rod small end diameter. This is important because sometimes these can get worn out and create free play for the small end bearing, resulting in damage to the bearing and most likely the entire top end. It can be done using the same method as the bore diameter. Compare your measurement to the acceptable range in your owner's manual. Making sure the diameter of the small end of the rod is within spec is often overlooked, but can prevent a serious top end failure. Prep Work Cylinder Cleaning - Once the cylinder has been deglazed or has come back from replating, it should be cleaned one final time. There is almost always leftover honing grit that will need to be removed. To effectively clean the cylinder, use warm soapy water and a bristle brush, followed by automatic transmission fluid or a similar cleaning solution and a brush or lint-free rag. To check the cleanliness of the cylinder, rub a cotton swab around the bore and look for contaminants. Clean the bore until no contaminants are visible on the cotton swab. Any honing grit that remains in the cylinder will facilitate premature wear of the piston rings. A clean, de-glazed, and properly honed cylinder is key to piston and ring function and longevity. Power Valve Function - Cylinders that have been exchanged or replated should have the power valve system reinstalled ahead of final installation. Often times, excess plating can inhibit power valve movement. To correct this, the excess plating must be carefully removed. On cylinders utilizing blade style power valves, the blade position with respect to the cylinder bore should be checked to ensure the blade does not protrude into the bore. Assemble the power valve before installing the new piston and reinstalling the cylinder. Be sure to check that the power valve is moving as it should, and not protruding into the bore. Piston - It is usually easiest to prepare the new piston as much as possible by installing one of the circlips and the ring pack ahead of joining it to the connecting rod. Unless your service manual dictates which circlip must be installed first, choose the easiest installation orientation. Typically, your dominant hand and preferred work orientation will dictate which side you choose to install the circlip on. It's easier to install one clip and the piston ring(s) before fixing the new piston to the connecting rod. Reference your service manual to determine the correct orientation of the circlip. Usually, the open end of the circlip should be oriented to the 12 or 6 o’clock position. Temporarily install the wrist pin and use it as a backstop so that the circlip is forced to move into its groove. Installing the circlip should be done by hand to limit the chance of deformation. Orient the circlip to the desired position, then push the open ends of the circlip into position first. Be careful not to scratch or mar the wrist pin bore in the process! Once installed, use a pick or screwdriver to confirm the circlip is fully seated and does not rotate. Any circlips that can be rotated must be replaced because they have been compromised and deformed during installation. Make sure to note the orientation of each clip after installation. Some manuals may recommend specific positions depending on the piston, but always be sure the gap is not lined up with or near the dimple(s). Rings - The compression ring(s) will be directional, and the top of the ring is typically denoted by markings near the end gaps. Apply a thin coat of oil to the ring, then carefully work the ring into position, making sure to line up the ring end gaps with the locating pin in each ring groove. Install the ring(s) with the marking(s) facing up, and make sure the ring end gap is lined up with the locating pin in the ring groove. Installation Piston - On the top of the piston, an arrow will be imprinted, which typically denotes the exhaust side of the piston. Consult your service manual to confirm the proper orientation of the arrow and piston. Apply a light amount of assembly lube to the small end bearing and wrist pin bore on the piston, then install the bearing. Align the piston with the small end of the rod, and slide the wrist pin into place. Once again, use the wrist pin as a backstop, then install the remaining circlip into position. Use a pick or screwdriver to confirm it is fully seated and does not rotate. Don't forget to apply some assembly lube to the ring and piston skirts before assembly! Cylinder to Piston - In most applications, a ring compressor is not required to compress the rings and install the piston into the cylinder. Lightly oil the cylinder bore with assembly lube or engine oil, then lube the piston skirt and ring faces. Prior to installing the piston and rings, confirm one final time that the piston ring ends are oriented correctly to their respective locating pins. Once the new piston is installed on the connecting rod, apply some assembly lube to the cylinder wall, and carefully slide the cylinder over the piston. Squeeze the ring with your hand as you slide the cylinder on, simultaneously making sure the ring end gap remains aligned with the locating pin. Position the piston at or near TDC then carefully lower the cylinder bore down onto the piston. Use your fingers to compress the ring(s) and ensure the cylinder bore is square to the piston. Feel how easily the cylinder slides over the piston and rings. The installation of the cylinder should be smooth and offer little resistance. If resistance is felt, stop immediately and assess the ring pack. Occasionally one of the rings may come out of position in its groove and snag the cylinder bore. This typically happens as the ring transitions out of your fingers and into the cylinder bore. Once the cylinder is safely over the ring, slide it all the way on keeping the piston at top dead center (TDC). Don't forget to torque your cylinder and head nuts to the specification listed in your manual. Post Build Torquing - Your cylinder and head nuts should always be torqued to the specifications outlined in your service manual. Double check all the nuts are set at their corresponding specs. Spark Plug - Don’t forget to install a new spark plug and if necessary gap it appropriately. Air Filter - Be sure to install a clean air filter prior to start up. Crankcase Leak Down Test - As one final precautionary measure perform a crankcase leak down test. A crankcase leak down test will help confirm all the seals, gaskets, and joints are sealing as they should. Break-In - When running your new top end for the first time, keep the engine slightly above idle, with slow and mild revs until the engine starts to get too hot to touch. Then, shut the engine off and let it cool until it is warm to the touch. Repeat this process, revving slightly higher and letting the engine get partially hotter each time. After 3 cycles like this, let the engine completely cool, then check all your fluids and re-check the torque on your cylinder and head bolts. Once that is squared away, you can begin break-in runs riding the bike. Make sure to keep the RPMs varied while riding for the first time, not letting the engine lug or sit at idle. A safe bet would be to ride the bike like this for 5 minutes, then 10 minutes, and finally 15 minutes, with adequate cooling in between. This will ensure your piston ring(s) are evenly and properly broken in. It’s never a bad idea to double check your fluids and torque one more time after complete cool down.
  12. Recently my 2007 RM85 broke down and wouldn't start. When I kicked it over it felt like it had no compression, but wasn't seized. I took the top end apart and found the Piston totally screwed. At first glance the cylinder didn't seem to have any damage, but upon further inspection I found a chip on one of the intake ports. The wrist pin bearing was missing two needles, and I found one just passed the reeds and I believe the other hit my foot when I removed the piston. I believe this to be the source of damage to my top end. Judging by the pictures, what should I do next? Can I get my cylinder resleaved? Should I buy a new cylinder? Or should I start looking for a replacement motor?
  13. Hi Guys, I have an 02' CR125r. I recently rebuilt the top end (new piston / rings / gaskets) and checked the tolerance of the cylinder to confirm correct piston size. Bike started and ran great right after the rebuild. The next week I went trail riding and initially the bike ran like a top! After about 1-2 hours of seat time, (not riding balls to the walls) the bike just died mid ride.. I let the bike cool down and then found I had zero compression. I replaced the plug as a quick troubleshoot but that did no justice. I have yet to tear the top end apart. Any thoughts as to whats going on? Or has someone else experienced something similar ? Appreciate the help!
  14. So I’m doing a total rebuild of a $500 2000 KX125 that “just needed a top end” .... I found it needed a cylinder weld and replate (big gouges) and the head trashed when I went to look at it. Bought it and noticed some rod play in the crank and took no chances. Ended up rebuilding the whole motor going with new oem crank, I don’t trust the hot rods lol. Had no luck finding a new or used cylinder head for this run 99-02 of the kx. Is my head too far gone to return to stock? Should I mill it for race gas? Also what are stock squish settings for this head for a starting point when milling?
  15. Top-end rebuilds are a necessary maintenance task associated with high performance off-road two-stroke motorcycle ownership. The common belief is that performing a top-end rebuild is a simple task that anyone can do, which is true, however, the devil is in the details. Sloppy, incomplete, or top-end builds done wrong can jeopardize performance, reduce reliability, and ruin the bottom end in the process. At Wiseco, we’ve been manufacturing top-end two-stroke engine components for decades and have been building engines for just as long. To ensure your Wiseco top-end parts run trouble free, we’ve put together some top-end rebuild tips that will ensure your next build is your best build. These tips will be discussed chronologically and will encompass all phases of the build from diagnosis and preparation, to disassembly, through post build. The tips we’re going to share shouldn’t be considered inclusive of everything that has to be done but are tips that focus on things that are either often overlooked or incredibly important. Let’s dive in! Before Teardown Pre-teardown activities can be an insightful way to help pinpoint any internal issues and prepare for upcoming work. Check out these three pre-teardown tasks that will streamline the whole process. Diagnosis - Before tearing the engine apart, are there any signs that a specific problem exists? If so, are there any diagnostic tests such as compression or crankcase leak down that are worth performing? Service Manual - Performing engine maintenance without an OEM factory service manual is not recommended. Make sure you have a manual for your machine prior to starting work. The manual is the only place you’ll find service limits, torque specs, and other key data. Clean Machine - Take the time to thoroughly clean the machine before opening up the engine, especially if you will be servicing the top-end without removing the engine from the machine. Need some tips on knowing when to replace your piston? We have a guide here. It doesn't have to be spotless, but cleaning off excessive dirt and mud can make it a lot easier to keep debris out of citical components during your rebuild. Disassembly Perform disassembly steps methodically and be cognizant of the fact that the bottom end of the engine will be exposed to the elements. Take every precaution to ensure dirt, debris, and hardware does not get into the bottom end. Bearings and other running surfaces have an incredibly low tolerance for dirt, no matter how little. Protect the bottom end - Once the cylinder has been removed, wrap a clean, lint-free rag around the top of the crankcase. Keep your bottom end components protected with a clean rag covering the exposed crankshaft opening. Piston removal - Easy piston circlip removal can be accomplished by using a pick and needle nose pliers. Insert the pick into the dimple in the piston and behind the circlip, then use it as a lever and pry the circlip part way out. Once part way out, grab the circlip with needle nose pliers. During this process, be careful not to scratch or mar the wrist pin bore, as this will make removing the wrist pin much more difficult. The ease of pin removal will be largely dependent on the engine design and condition of the bore. If the pin can be removed by hand, great, if not, light tapping while supporting the rod is permissible. Otherwise, a pin puller should be utilized, which can be bought or made. In its simplest form, this can consist of an appropriately sized bolt, nut, and socket. Once the wrist pin has been removed, the piston can be removed from the rod. Removal of your old piston should be carefully handled. Cautiously remove the circlip and the wrist pin to get the piston off the connecting rod. Carelessness during this step could damage your connecting rod or crank. Power Valve Disassembly - Prior to taking the power valve system apart, spend some time reviewing the procedure in your service manual. For additional insight into how the components interact, review the exploded views in the service manual and look at part microfiches which can be found online. When removing the power valve system, consider laying the components out on a clean sheet of paper in an orientation that correlates to how they are installed in the engine. This is a relatively simple thing to do that will help you remember how they are installed later. When it comes to cleaning the components, clean them one at a time or in small batches so that they don’t get mixed up. Take note of how your powervalve is assembled and operates before taking the components off for cleaning. Inspection Meticulously check all the top-end parts to ensure they are in good working condition. Rotate the crankshaft by hand and feel for smoothness in the crank and rod bearings. Review the items below for often overlooked inspection opportunities. While the top end is apart, inspect your connecting rod and crankshaft to ensure everything is in good operating order. Reed Valve - Don’t forget to check the condition of the reed valve petals, cage, and any stopper plates. Most service manuals will detail the acceptable clearance between the petal tips and cage as well as the stopper plate height. Ensure any rubber coatings on the reed cage are in good condition. Intake Manifold - Check the intake manifold for cracks. Cracks are more common on older engines, and if they propagate all the way through the manifold, can lead to air leaks. Exhaust Flange - Check the condition of the exhaust flange and ensure that it is not excessively worn. An excessively worn flange will make exhaust gas sealing difficult, hamper performance, and leak the infamous spooge. Power Valve Components - Take a moment to review the condition of all the power valve components. Significant wear can occur over time and lead to performance losses. Rod Small End - Check the small end rod bore for surface defects such as pitting, scratches, and marring. Any severe defects in the bore will necessitate rod replacement. New Parts Once you’ve disassembled the engine and have a full picture of any issues, make a list of everything you’ll need to replace. At the very least, you’ll likely be replacing the piston and top-end gaskets. Forged piston kits are available from Wiseco for a wide range of applications, and include the piston, ring(s), wrist pin, and circlips. Many applications can also be purchased with a complete top-end gasket kit from Wiseco. Wiseco pistons are available with features and pricing ranging from reliable replacement to race-focused. Replace your top end with quality components. Shown is Wiseco's Racer Elite two-stroke piston kit. Check out everything Wiseco offers for your machine here. Trying to decide between single-ring and two-ring? Check out our explanation here. Measurements The number of measurements that should be taken throughout the top-end rebuild will be discretionary. At Wiseco, we strive for excellence and err on the side of caution when it comes to engine building, so our builds consist of numerous measurements and inspections prior to reassembly. For us, this ensures a high level of confidence and safeguards against external oversights. We recommend the same to anyone building an engine. Below is a list of measurements that we routinely make when rebuilding a two-stroke top-end: Piston ring end gaps Checking ring end gap involves inserting the piston ring into the bore and using feeler gauges to determine how large of a gap there is. You should compare your measurement to the spec outlined in your owners manual or piston instructions. Rings commonly come pre-gapped, but some fine-tuning may be required after measuring. Ring end gaps should be filed evenly, small portions at a time to reach the desired spec. Piston ring to ring groove clearance This measurement is double-checked by Wiseco during manufacturing, but it never hurts to double-check. Ring to ring groove clearance should also be checked and compared to the recommended spec in your manual/piston instructions. Piston to cylinder clearance Measuring piston to cylinder wall clearance involves measuring the diameter of the piston and subtracting that from the bore diameter. Be sure to follow your piston instructions on measuring your piston at the proper gauge points. Wrist pin to piston clearance Please note, pin fit is done by Wiseco during manufacturing, but if you have the tools, it's always a good idea to double check. Making sure your piston has proper clearance involves measuring the wrist pin diameter and subtracting that from the pin bore diameter. This can accomplished using a bore gauge set and a micrometer. Rod small end diameter Power valve components Out of these measurements, confirming or adjusting the ring end gaps is by far the most important, followed closely by ensuring the cylinder bore is within spec with respect to diameter, straightness, and roundness. Understandably, some measurements may be difficult for the average home builder to execute, usually due to not having the right equipment, however, a competent shop should be able to assist. Prep Work Before putting everything back together, take the time to prepare individual components so they aren’t overlooked or forgotten. Cylinder Cleaning - Once the cylinder has been deglazed or has come back from replating, it should be cleaned one final time. There is almost always leftover honing grit that will need to be removed. To effectively clean the cylinder, use warm soapy water and a bristle brush followed by automatic transmission fluid and a brush or lint-free rag. To check the cleanliness of the cylinder, rub a cotton swab around the bore and look for contaminants. Clean the bore until no contaminants are visible on the cotton swab. Any honing grit that remains in the cylinder will facilitate premature wear of the piston rings. Cylinder prep is incredibly important for a top end rebuild. Make sure your cylinder's plating is in good condition and it is properly deglazed, honed, and cleaned. Read our complete guide to cylinder prep here. Does your cylinder need the exhaust bridge relieved? We explain that here. Power Valve Function - Cylinders that have been exchanged or replated should have the power valve system reinstalled ahead of final installation. Often times, excess plating can inhibit power valve movement. To correct this, the excess plating must be carefully removed. On cylinders utilizing blade style power valves, the blade position with respect to the cylinder bore should be checked to ensure the blade does not protrude into the bore. Make sure your power valve is reassembled and functioning properly before reinstalling the cylinder. Piston - It is usually easiest to prepare the new piston as much as possible by installing one of the circlips and the ring pack ahead of joining it to the connecting rod. Unless your service manual dictates which circlip must be installed first, choose the easiest installation orientation. Typically, your dominant hand and preferred work orientation will dictate which side you choose to install the circlip on. Reference your service manual to determine the correct orientation of the circlip. Usually, the open end of the circlip should be oriented to the 12 or 6 o’clock position. Temporarily install the wrist pin and use it as a backstop so that the circlip is forced to move into its groove. Installing the circlip should be done by hand to limit the chance of deformation. Orient the circlip to the desired position, then push the open ends of the circlip into position first. Be careful not to scratch or mar the wrist pin bore in the process! Once installed, use a pick or screwdriver to confirm the circlip is fully seated and does not rotate. Any circlips that can be rotated must be replaced because they have been compromised and deformed during installation. It's easiest to install your ring pack and one circlip before installing the piston on the small end of the rod. Rings - The compression ring(s) will be directional, and the top of the ring is typically denoted by markings near the end gaps. Apply a thin coat of oil to the ring, then carefully work the ring into position. Ensuring the ring end gaps are lined up with the locating pins is crucial to proper 2-stroke engine operation. Read more about locating pins here. Installation Carefully work through the installation process by paying attention to the small details. Double check instructions and don’t force anything that feels abnormal. Be especially careful when mating the cylinder to the piston assembly. Piston - On the top of the piston, an arrow will be imprinted, which typically denotes the exhaust side of the piston. Consult your service manual and/or instructions that came with your piston kit to confirm the proper orientation of the arrow and piston. Apply a light amount of assembly lube to the small end bearing and wrist pin bore on the piston, then install the bearing, align the piston with the small end of the rod, and slide the wrist pin into place. Once again, use the wrist pin as a backstop then install the remaining circlip into position. Use a pick or screwdriver to confirm it is fully seated and does not rotate. When installing the new piston on the connecting rod, make sure the piston is correctly oriented, usually with the appropriate marking facing the exhaust side. Also, apply lube to the new small end bearing and wrist pin bore. Cylinder to Piston - In most applications, a ring compressor is not required to compress the rings and install the piston into the cylinder. Lightly oil the cylinder bore with assembly lube or engine oil. Then, lube the piston skirt and ring faces. Prior to installing the piston and rings, confirm one final time that the piston ring ends are oriented correctly to their respective locating pins. Before sliding the cylinder onto the new piston, apply some lube to the piston skirts, ring faces, and clyinder wall. It's critical to make sure the ring end gaps remain correctly oriented with their locating pins throughout cylinder installation. Position the piston at or near TDC, then carefully lower the cylinder bore down onto the piston. Use your fingers to compress the ring(s) and ensure the cylinder bore is square to the piston. Feel how easily the cylinder slides over the piston and rings. The installation of the cylinder should be smooth and offer little resistance. If resistance is felt, stop immediately and assess the ring pack. Occasionally, one of the rings may come out of position in its groove and snag the cylinder bore. This typically happens as the ring transitions out of your fingers and into the cylinder bore. When installed correctly, the new piston should move smoothly up and down in the bore without any snags or notchiness. Always make sure to torque your cylinder and head bolts to the spec outlined in your owners manual. Tighten the head bolts in a star pattern to prevent warpage. Post Build Before firing up your fresh top-end, do these three things to ensure the engine performs optimally. Crankcase Leak Down Test - As one final precautionary measure, perform a crankcase leak down test. A crankcase leak down test will help confirm all the seals, gaskets, and joints are sealing as they should. Spark Plug - Don’t forget to install a new spark plug, and, if necessary, gap it appropriately. Air Filter - Be sure to install a clean air filter prior to start up. A crankcase leakdown test can help ensure your new rings are sealing properly before initial fire up. Ready to break in the engine? Check out our complete motorcycle engine break in guide here. Wrap Up Top-end rebuilds shouldn’t be taken for granted or oversimplified since they deal with the heart of the engine. With adequate preparation, the right tools, attention to detail, and the appropriate knowledge, top-end rebuilds can be performed by anyone and yield great results. At Wiseco, we’ve performed countless engine builds and hope the information we’ve shared makes your next engine build go smoothly and successfully. This YZ250 engine is ready to rip like new again with a fresh Wiseco top end!
  16. Profile and ovality are two main characteristics of piston design. Here we'll take a look at why pistons are designed to not be perfectly round. When you look at a piston, it is easy to think that they are a perfectly round, cylindrical shape. After all, they go into a round hole (the cylinder!) So why shouldn’t they also be round? The fact is, the external shape of a piston is very sophisticated. An internal combustion engine is a hostile environment where combustion gasses can reach dangerous temperatures, and there could be port windows and surface undulations from uneven cylinder cooling. Designing a piston that is optimized for combustion chamber conditions is an important challenge. Throughout the years, piston materials and design characteristics to compensate for expansion under heat have evolved. Forging pistons out of aluminum provides great strength and durability, but it must be used in the correct design to properly optimize the performance of the piston. (Left) These are an example of early piston design, using steel as the primary material. These would not be sufficient for the requirements of modern engines. Compare with the variety of modern forged aluminum pistons from Wiseco (right) featuring different coatings and designs. Read more about the forging process here. There are two major characteristics of piston shapes: profile and ovality. Wiseco's Product Manager and long time engineer Dave Sulecki commented on these piston characteristics: “Piston profile and ovality are one of the most important features of a piston, these really determine not only how the piston will wear over time, but also how well the piston can perform. When the engineer calculates the piston to cylinder clearance, this is only the beginning of a complex determination of the final piston geometry." Profile If you roll a piston across a flat surface, you'll notice it does not roll in a straight line. You are observing characteristic number one: profile. Because aluminum conducts so much heat, pistons are designed with a taper -- the top of the piston, near the crown, is a smaller diameter than the bottom of the piston, near the skirt. The skirt of the piston actually is designed with what is called a barrel shape, illustrated below. This is beacuase temperatures near the dome of the piston vary from the temperatures at the skirt of the piston, resulting in different levels of expansion. The tapered shape allows the piston to expand as heat is applied, so the piston does not bind in the cylinder bore. The higher the temperature, the more the piston will expand. The design challenge then becomes calculating the degree of taper. Too tight of clearance can induce scuffing or seizure from heat expansion, while too loose of clearance can introduce noise from piston rock. This illustration shows piston profile: the barrel shape and taper pistons have. Because of this, measuring diameter on the skirts yields a larger number than measruing near the dome. "The piston profile is critical to how the piston will support itself as it reciprocates in the cylinder bore. For example, the piston profile must help hold the piston vertical in the bore during combustion; imagine any excess leaning of the piston would allow piston rings to become “unseated” and not seal properly against the cylinder wall," elaborates Sulecki. Ovality As you roll the piston across the table, you will also observe the piston rising and falling in a “hump-hump-hump” motion, much like a wheel that has a flat spot. This characteristic is called ovality, also known as camming. In the simplest terms, ovality means that the piston is smallest in line with the wrist pin bore. As the engine begins its movement, the connecting rod is not moving only up and down, but due to the rotation aspect is simultaneously moving sideways. This action from the connecting rod and the motion of the crankshaft place load forces on the piston along the plane of the connecting rod inline with rotation (known as the “thrust axis”). To allow the piston to move freely with this sidelong force, the piston cannot be perfectly round, or it would bind in the round cylinder bore. By applying ovality to the piston, the piston is free to move up and down as needed. The challenge in design is applying the proper amount of ovality. Too little ovality can cause the piston to contact the cylinder wall nearest the end of the piston pin, while too much ovality can cause the piston to ride too heavily against the cylinder wall along this “thrust axis.” Too much load along the thrust axis can result in heavy scuffing or seizure, when the piston breaks the oil film barrier and contacts the cylinder wall directly. This illustration shows piston ovality. The solid-lined ellipse represents the diameter of the piston as if you're looking down onto the dome. Dave Sulecki commented on ovality, "Ovality is an unknown thing, when most people look at a piston they think it is round, and to the naked eye this must be the case. However, take a new two stroke piston and roll it across the table and what happens? You will see the uneven “hump, hump, hump” as the piston rolls in a large arc…you are seeing both the profile (the “cone shape” of the piston”, in combination with the ovality as the piston rolls unevenly. Ovality is necessary for the piston to move up and down in the cylinder bore, as the crankshaft and connecting rod try to force the piston upward, and combustion forces the piston downward, ovality allows the piston to move without binding in the round cylinder bore." Your bike's engine need a complete rebuild? Or maybe just a piston and valves? Check out our Garage Buddy line of rebuild kits. Another visual representation of piston profile and ovality. Ovality is a key detail to remember when measuring piston size. The piston must be measured at the bottom of the skirt, 90 degrees from the wrist pin hole to reach an accurate measurement. When measuring piston diameter, be sure you’re using the proper tools. Do not use calipers to measure your piston(s), as you won’t get an accurate measurement. The most accurate tool to use is a set of outside diameter micrometers. Your piston should be measured at the bottom of the skirt, 90 degrees from the pin hole. Please note: The measurements displayed here are for representational purposes only. Measure each of your own individual parts for accuracy. Some Wiseco pistons feature proprietary skirt coatings such as ArmorGlide or ArmorFit, which are designed to reduce wear, provide smoother and quieter operation, and are applied to last for the life of the piston. With certain skirt coated pistons, piston-to-wall clearance measuring specs will change, so be sure to read the instructions that come with your piston(s). Click here to find out more about Wiseco's different coatings.
  17. Checking and adjusting valves is considered routine maintenance on high-performance four-stroke engines used throughout the powersports industry. Valve clearance inspections are not hard to perform and are well within the capability of most owners. However, there are tips and tricks that can make the job go smoother and yield better results. The JE Pistons team has been building and testing engines for over 70 years, and as a result, we know what it takes to do the job to a high standard. With years of experience in four-stroke engines of all types, JE is no stranger to the valve adjustments and maintenance. Whether you own a dirt bike, ATV, street bike, or any other four-stroke equipped machine, chances are your owner’s manual outlines when your engine’s valve clearances should be checked. Depending on the application, the inspection interval may vary from 15 hours to 15,000 miles. Checking clearances at the specified intervals is incredibly important to ensure the engine continues to run optimally and lasts a long time. Also, as a rule of thumb, anytime the top-end of the engine is disassembled, it is best practice to check valve clearances. Any time you have the top end apart to replace the piston, you should check your valve clearance and adjust as necessary. Before servicing your engine, you will need your machine’s factory service manual. The service manual is required because it specifies the required clearances, torque specs, and other information imperative to performing the task. The outline we’re providing should be considered supplemental to the information in your service manual and is in no way a comprehensive substitute. To tackle this job, you’ll typically need the following tools and supplies: Lash/feeler gauges Metric wrenches Metric sockets Clean rags or towels Screwdrivers Caliper In most cases, specialty tools aren’t utilized, however, if they are, you’ll find that information in your service manual. A critical tool to measuring valve clearance is a set of feeler gauges. Since the engine is going to be partially opened up and exposed, it is best to work on a clean machine. If your machine is dirty, take the time to clean it thoroughly so the risk of contaminating the engine with debris is lessened. Prioritize cleaning the cylinder head cover and surrounding area. Chances are you're not working on a new bike, so be sure the area around the cam cover is clean to avoid unwanted debris. We’ll begin outlining the procedure with the removal of the cylinder head cover. You’ll likely need to remove your seat, fuel tank and various other components before this. These items should be easy to remove, and your service manual should provide sufficient guidance. When removing the cylinder head cover, be extremely careful not to allow dirt to fall into the cylinder head. If you're working on an engine still in the bike, you'll need to remove your seat and tank, along with any other components hindering your access to the cam cover. Next, the valvetrain will need to be positioned so that the clearances can be checked. Most service manuals specify setting the valvetrain so that the piston is at top dead center (TDC) on the compression stroke. Setting the valvetrain at this position ensures that the cam, or cams, are on their base circles and that neither the intake or exhaust valves are open. The base circle of the cam is the circular portion of the cam which does not influence valve lift. As an aside and for future reference, while it is sensible to follow the service manuals recommendations on setting the piston position and engine stroke when the engine is assembled, it is not necessary, especially when working on an engine that is being rebuilt. Checking valve clearance can also be accomplished with the cylinder head removed from the engine and positioning the cam lobes opposite the lifter buckets to ensure the clearance measurements are taken with the cam on its base circle. Whether the head is still on the engine or you're working on it separately, be sure the engine is either at TDC or the cam lobes are resting somewhere on their base circle and not applying pressure to the buckets like they would when opening valves. Your service manual outlines the required procedure to set the engine on its compression stroke at TDC. Most engines have mating alignment marks on the crankshaft and engine case as well as the cam gear and cylinder head. It is imperative that you know and understand how to utilize these reference points because they are used to correctly set the cam timing after any valve clearance adjustments have been made. Once you’ve positioned the cams correctly, valve clearance measurements can be made using lash (feeler) gauges. Lash gauge measurements can be tricky due to surrounding geometry and inexperience on the user’s part. To obtain the most accurate measurement, it is essential that the lash gauge is inserted between the cam and lifter bucket as close to parallel as possible. To facilitate parallel entry, bend the lash gauges as necessary so that their tips can easily slide between the cam and lifter bucket. Measure valve clearance by inserting your lash gauge(s) between the cam lobe and lifter bucket. Accurate lash gauge measurements are subjective because they are based on feel. Ideally, the most accurate valve clearance measurements are obtained when the lash gauge passes between the cam and lifter bucket with a slight drag. Gauges that pass through easily or must be forced through should be considered too thin or too thick, respectively. When this occurs, other gauges should be tried, or, if you’re between sizes, the average of the two should be utilized as the valve clearance. Begin by the using the gauge equal to the median recommended valve clearance measurement in your manual. You may have to move up or down a couple sizes until you find the size that slides between the cam lobe and bucket with a slight drag. Record this measurement for each valve. After each of the intake and exhaust valve clearances has been recorded, they should be compared to the service specifications outlined in your service manual. If the valve clearances fall within the manufacturer’s recommended range, no further work is required. However, if the clearances are outside of the specifications, determining what adjustments need to be made is the next step. To do this, unless the current valve shim thicknesses are known, the cylinder head will have to be disassembled so that the shims can be removed and measured. Follow the necessary procedures outlined in your service manual to slacken the cam chain, remove the cam cap, cams, and lifter buckets. When removing the cam cap, be sure to follow any recommended removal/tensioning sequences. Once the cam chain is free, use a piece of wire to secure it to the cylinder head. If it happens to fall in the chaincase, a pen magnet can be used to fish it out. Be sure to slacken the cam chain before attempting removal. Remove the camshaft(s) and secure the cam chain so it doesn't fall in the cases. To remove the lifter buckets, a pen magnet or valve lapping tool are both excellent aids to utilize. When extracting the lifter buckets from their bores, be very careful and keep tabs on whether or not the valve shim sticks to the underside of the bucket. Oil underneath the lifter buckets makes sticking shims a common occurrence. Use a pen magnet or lapping tool to remove the buckets. Be careful of shims that may stick on the underside of buckets. Through engine operation, the lifter buckets mate to their respective bores so they should never be mixed around. To help keep track of things, draw out a simple cylinder head diagram on a piece of paper so that the lifter buckets and all the measurements can be tracked. Proceed to remove any remaining valve shims from the cylinder head. Once the valve shims have been removed, measure the shim thicknesses and the diameter of shims used. Drawing a simple diagram can help you keep track of what buckets and shims came from where. Once everything is removed, confirm your shim measurements. To determine what valve shim adjustments should be made, a simple formula is used: New Shim Thickness = Recorded Clearance - Specified Clearance + Old Shim Thickness Calculate the necessary new shim thicknesses for all the clearances that are out of spec. Valve shims are available from most OEMs, but helpful shim kits that come with an assortment of sizes are also available from the aftermarket. Before sourcing shims, you’ll need to determine the diameter of the shim you need because there are a handful of different shim diameters used within the industry. Shown below are the standard shim diameters. Size (mm) 7.48 (Japanese) 9.48 (Japanese) 8.90 (KTM) 10.00 (KTM) Shim assortment kits are available from various aftermarket suppliers, just be sure you know what shim diameter your machine takes before ordering. This kit was sourced from ProX Racing Parts. When calculating what new shim thicknesses are required, it is best to target the specified clearance on the upper end of the prescribed clearance range. This is advised because valve clearances usually diminish over time. Valve shims are available in 0.025mm increments, so the shims that can be utilized will also influence the new clearances that can be achieved. Once you have the correct shims in hand, the valvetrain can be reassembled. Use engine oil to lubricate the valve shims and carefully install them. The lifter buckets should also be lubed before installation. When inserting the lifter buckets into their respective bores, ensure that the buckets bottom on the shims and at no point comes back up. If the bucket comes back up upon installation, occasionally the shim will stick to it and become displaced. The engine can quickly be severely damaged if the shim is not seated correctly between the valve stem and lifter bucket. Using engine oil and assembly lube when reassembling your shims, buckets, and cams helps prevent premature wear and also helps your shims stay in place while re-inserting buckets. Pay close attention to your service manual during installation of the cams and when setting cam timing. Double check that the crankshaft is in its correct position. If you’re working on a twin cam engine, it is best to install the camshaft that resides opposite of the chain tensioner first (typically the exhaust cam), pull the chain taught from the crankshaft, orient the cam gear correctly, and then wrap the chain around the gear. Once this is accomplished, the remaining cam can be oriented correctly and the chain wrapped around it. Double check orientation of all components and that timing has been set correctly. Be sure to use engine oil to lube the cam bearing bores upon installation. Make sure your timing marks on your crankshaft are lined up, then reinstall your cam(s). It's important to make sure the timing marks on the crankshaft and cam(s) remain lined up simultaneously when reinstalling the cam chain. Click here for a more in-depth guide to setting cam timing. When installing the cam cap, ensure the torque specs and sequences outlined in your service manual are followed. Deviations from either can cause the cam bearings to wear prematurely. Once the cams have been secured, use lash gauges to confirm the new valve clearances match the clearances that were calculated. Any deviations that are found should be carefully scrutinized because they may be indicative of calculation errors or shims that are not seated correctly. If there is a hint of a problem at this point, it is imperative that it is thoroughly understood and corrected before proceeding. Be sure to follow the correct torque sequence and specifications when re-installing cam caps. Assuming everything checks out, the cam chain can be tensioned. Follow the procedure outlined in your service manual to do so. Once the tension has been set, rotate the engine through at least four complete revolutions. Doing so will help the automatic chain tensioners to set the correct initial tension and confirm that the engine has been timed correctly. Position the piston at TDC on the compression stroke and check that all timing features on the crank and cams remain in their specified positions. Complete the job by carefully reinstalling the cylinder head cover, making sure to torque those bolts in a star sequence to recommended specs. Once the rest of the machine is buttoned up, it’s time to get back to riding! More Tech Articles from JE Pistons
  18. The piston is one of many wear items in your powersports machine. It may last longer than tires or a chain, but it should still be treated as normal maintenance when the time comes. Here, we go through key tips to help you know when it's time for a refresh. The piston in an internal combustion engine is arguably one of the most important components found in the engine. When it comes to high-performance engines used in powersports applications, it is also a component that is regularly replaced and serviced. Knowing when your piston should be replaced and how it wears is key to maintaining a reliable engine. To help you make that decision, we laid out replacement intervals, piston wear, why it’s important to replace the piston, and piston replacement options. Piston replacement intervals are typically outlined in your machine’s factory service manual. Using dirt bikes as an example, many manufacturers outline a piston and ring replacement schedule of every six races or 15-30 hours for a four-stroke, depending on the machine. If you’re new to the sport or have never looked at your factory service manual, these service intervals may seem shockingly short. The service intervals are based on the service schedules required to maintain a high-level racer’s machine. Unfortunately, for the average rider, the outlined service intervals commonly end up being conservative. The recommended piston service intervals outlined in your manual may be shocking, but the actual required service time depends on many variables that differ by each rider. In reality, piston replacement intervals should be established based on how the individual owner rides and maintains their machine. It’s true that forged pistons exhibit greater strength and wear resistance, but the variables of rider and maintenance still apply. Engine displacement, engine make, air filter maintenance, environmental conditions, riding style, and the type of riding the machine is used for will all influence how long the engine should be operated before servicing it. Monitoring the engine’s health through periodic checks such as compression and leak down tests is the best way most riders can appropriately time major service tasks, such as piston and ring replacement. Due to the number of variables that affect engine wear, it is simply not possible to specify a replacement schedule that fits everyone’s needs other than a very conservative schedule. Realistically, there are too many variables to establish an official recommended piston replacement time. Sticking to the short time recommended in the manual can be overkill for some, but keeps things on the safe side. (We are not endorsing dry assembly with this photo, it was just mocked up for photo purposes.) Piston wear will typically occur in four key areas for both two and four-stroke engines, which include the piston skirt, wrist pin bore, ring grooves, and piston crown. The next time you disassemble your top end, keep an eye out for these wear points. Piston Skirt Wear Nowadays, on four-stroke engines, the piston skirt is very short and limited to the major and minor thrust faces of the piston. For reference, the thrust faces correspond with the intake and exhaust valve sides of the cylinder head. Two-stroke pistons use the same nomenclature, but feature much longer, more pronounced skirts. Piston skirts experience load on the major and minor thrust sides, resulting in wear in those areas. Piston skirt wear occurs because of the thrust loading that results from the inherent geometry of the crank mechanism as the engine fires. Peak combustion pressure occurs slightly after top dead center, which causes the piston to thrust into the cylinder wall. Skirt wear can be observed both visually and by measuring the skirt’s diameter and referencing it against the diameter outlined in your service manual. Skirt wear will appear as a polished area on the major and minor thrusting faces of the piston. Notice the polished-looking wear marks on the forged piston on the left, and the vertical wear marks on two-stroke cast piston on the right. These reflect wear after a substantial amount of run time. The grooves on the two-stroke piston are a potential sign of dust/dirt in the cylinder. Your pistons may feature one of a few different types of skirt coating. Wiseco pistons utilize different types of skirt coatings depending on the piston, including ArmorGlide and ArmorFit coatings. These coatings are screen printed on and are applied to remain on the skirt for the life of the piston. You will likely see some wear on the skirt coating after putting time on your piston(s), but if it is worn all the way through the coating, there’s a good chance there’s an underlying issue that needs investigation. Too little clearance, foreign material in the cylinder, and improper cylinder preparation could be causes of excessive skirt wear. This piston is equipped with ArmorGlide skirt coating. However, the wear patterns are indicative of the possibility of foreign material, such as dirt, making its way into the cylinder. On two-stroke engines, skirt wear can occasionally be heard audibly while the engine is running, which is commonly known as “piston slap”. A rhythmic metallic sound often accompanies a loose or worn piston when the engine idles. What can be heard is the piston rocking back and forth in its bore as it reciprocates. Piston Crown Piston crown wear will occur as a result of aggressive or improper tuning, and on four-stroke engines, a damaged or mis-timed valvetrain. Engines operated with a lean mixture at full throttle will see abnormally high combustion temps, which can cause detonation. The results of detonation will be visible on the piston crown as a pitted or eroded surface. The pitting in the center is a pretty clear sign of detonation. In many cases, pitting and erosion will be much more evident the leaner the running conditions. Piston crown damage due to valvetrain contact will be visible as indentations or cracks near the valve pockets. Valvetrain contact can occur due to valve float caused by excessive RPM or mis-timed valves. Notice the half-circles in the valve reliefs. This is a clear sign of valve contact with the piston. Ring Groove Wear The piston rings move in and out of their grooves because of the ignition of the air/fuel mixture in the combustion chamber. Once the mixture is ignited, the cylinder pressure increases which energizes the compression ring and forces it against the cylinder wall, causing it to slide in its groove. On four-stroke engines, the compression ring will transition from seating on the bottom of the ring groove to the top ring groove at the end of the exhaust stroke due to forces of inertia acting on the ring. Ring movement during operation will eventually wear ring grooves beyond their designed size. Substantial run time can also leave carbon deposits in the ring grooves, affecting ring seal and performance. Ring and groove wear can occur due to the sliding and reciprocating motion of the rings and can be exasperated by carbon deposits that accumulate in the ring groove. Ring and groove wear can be qualified by thoroughly cleaning the ring and groove and then measuring each. Most service manuals outline specifications for ring width, groove width, and piston ring to ring groove clearance. Ring wear can be easily visually observed, but can be confirmed by taking axial height and radial width measurements and comparing them to the original spec. Wrist Pin Bore Wear Wrist pin bore wear occurs as a result of the loading of the wrist pin joint through inertia and combustion loading. The wrist pin bore will typically wear into an oblong shape. In some engines, wrist pin bore wear will be visible in the top and bottom of the bore. Usually, a portion of the bore will appear burnished or polished. Alternatively, the wrist pin bore can be measured from top to bottom and from side to side. Both measurements can be compared to one another to determine how much the bore has become out of round and to the diameters specified in the service manual. Wrist pin bores typically wear into a vertical, oval shape due to the pushing and pulling forces of engine operation. Visual inspection can show excessive wear, and a vertical and horizontal diameter measurement can tell you how out of round it is. If it's proving out of round, it's probably time for a replacement. The importance of replacing the piston at regular intervals in high-performance powersports engines cannot be overstated. If left unattended, the resulting cumulative wear of the piston will eventually result in a catastrophic and expensive engine failure. Typically, too much time on a piston can lead to gradual and finally complete failure of the skirt in both two and four-stroke engines. Between aftermarket suppliers and OEMs, replacement piston options are plentiful and can be overwhelming. The most common upgrade and consideration most riders are faced with is whether or not to move to a forged piston. Forged pistons can be a nice upgrade for many riders because they can offer additional strength and wear resistance over cast pistons. Forged pistons achieve greater strength than cast pistons by using different aluminum alloys and manufacturing processes. The forging process for pistons results in finished components that have a tighter molecular structure and grain flow optimized for strength. Comparatively, cast pistons are not cast under high pressures and have molecular structures that are not as tight or organized, which in severe cases, can lead to voids, inclusions, and air pockets. Forging pistons results in a better-aligned grain flow and higher tensile strength. Read more about how Wiseco forges pistons here. Wiseco has been forging pistons in the U.S. for decades and has spent countless hours on research and development to make their forged pistons the option that best combines performance and wear resistance. Still, there is a lifespan to a piston, and the above tips should be used to practice regular maintenance on your machine.
  19. Wiseco's new Garage Buddy engine rebuild kits offer everything you need for a bottom and top end rebuild. From the crank to the piston kit, and even an hour meter to track maintenance, everything is included in one box. Here we take a look at the components included, and the technology behind them. So, the time has come for an engine rebuild. Hopefully it’s being done as a practice of proper maintenance, but for many it will be because of an engine failure. Whether the bottom end, top end, or both went out, the first step is to disassemble and inspect. After determining any damage done to engine cases or the cylinder, and arranging for those to be repaired/replaced, you’re faced with choosing what internal engine components to buy, where to get them, and how much the costs are going to add up. A full engine rebuild is a serious job and requires a lot of parts to be replaced, especially in four-strokes. You have to think of bottom end bearings and seals, a crankshaft assembly, piston, rings, clips, wristpin, and the plethora of gaskets required for reassembly. If you’re doing this rebuild yourself, or having your local shop do the labor, chances are you don’t have a factory team budget to spend on parts. However, you know you want high-quality and durable parts, because you don’t want to find yourself doing this again anytime soon. Rebuilding a dirt bike engine is an involved job, requiring many parts to be replaced. Missing one seal or gasket can put the whole rebuild on hold. You could source all the different parts you need from different vendors to find the best combination of quality and affordability. But, it can get frustrating when 6 different packages are coming from 6 different vendors at different times, and each one relies on the next for you to complete your rebuild. Wiseco is one of the manufacturers that has been offering top end kits (including piston, rings, clips, gaskets, and seals) all in one box, under one part number for many years. Complete bottom end rebuild kits are also available from Wiseco, with all necessary parts under one part number. So, it seemed like a no brainer to combine the top and bottom end kits, and throw in a couple extra goodies to make your complete engine rebuild in your garage as hassle free as possible. Top-end piston kits and bottom-end kits come together to create Wiseco Garage Buddy rebuild kits. Wiseco Garage Buddy kits are exactly as the name implies, the buddy you want to have in your garage that has everything ready to go for your engine rebuild. Garage Buddy engine rebuild kits come with all parts needed to rebuild the bottom and top end, plus an hour meter—with a Garage Buddy specific decal—to track critical maintenance intervals and identify your rebuild as a Garage Buddy rebuild. The kits include: Crankshaft assembly OEM quality main bearings All engine gaskets, seals, and O-rings Wiseco standard series forged piston kit (piston, ring(s), pin, clips) Small end bearing (for two-strokes) Cam chain (for four-strokes) Hour meter with mounting bracket and hour meter decal Open up a Garage Buddy kit, and you'll find all the components you need to rebuild your bottom and top end. 2-stroke and 4-stroke Whether your machine of choice is a 2-stroke or a 4-stroke, Wiseco can help you with your rebuild. 2-stroke Wiseco Garage Buddy kits include everything listed above, featuring a Wiseco forged Pro-Lite piston kit. You don’t even have to worry about sourcing a small-end bearing, that’s included too. 2-stroke fans often brag about the ability to rebuild their bikes so much cheaper than their 4-stroke counterparts, and they’ll have even more ammo for bragging now with these kits starting in the $400 range. A Wiseco 2-stroke Garage Buddy kit includes all the parts you'll need for piston and crankshaft replacement, plus an hour meter to track your next maintenance intervals. However, don’t abandon your 4-stroke yet. Many riders cringe—and rightfully so—at the thought of rebuilding their 4-stroke because of the costs associated, but Wiseco 4-stroke Garage Buddy kits starting in the $600s takes a lot of sting off your rebuild project. They even include a new timing chain. No matter what you’re rebuilding, you’ll be able to track key maintenance intervals for your fresh engine with the Wiseco hour meter and log book that’s included in the Garage Buddy kits. All Garage Buddy kits include a specific hour meter decal as well, which is important for the limited warranty to identify the rebuild as a Garage Buddy rebuild. A Wiseco 4-stroke Garage Buddy kit includes all the parts you'll need for piston and crankshaft replacement, including a cam chain and an hour meter. Ease of ordering Wiseco Garage Buddy kits come with the listed parts boxed up in one box, and listed under one part number, which makes it nice to not have to worry about if you might’ve missed something when ordering. Simply find the single part number for your model, order, and you’re on your way to brand new performance. Quality Performance, backed by a Limited Warranty Ordering convenience doesn’t make a difference if the parts do not provide quality and reliability. Wiseco crankshafts are designed completely by in-house engineers, who determine all assembled dimensions, clearances, materials, and specifications. These specifications have been determined from R&D tests such as hand inspection, dyno, and failure analysis. Once Wiseco cranks have been manufactured to exact specifications they are batch inspected, and critical tolerances and dimensions are measured. Major inspections and tests include crank run-out and trueness, because they must operate within a strict tolerance to last long and perform well. Wiseco crankshafts and bearings are manufactured and tested according to strict tolerances and clearances, including run-out and trueness. Crankshaft designs are also tested for 4 hours at WOT. Bearings are another critical point of inspection. Wiseco has worked to build relationships with top-tier bearing suppliers to provide a long lasting, low-friction product. Debris in a bearing can lead to very fast wear, and Wiseco makes it a point to inspect batches of bearings for cleanliness and proper operation. As part of the design and engineering process, prototype crankshafts are hand inspected and dyno-tested at wide open throttle for 4 consecutive hours. This is a benchmark test, and new crankshaft designs must pass it before to be deemed worthy for manufacturing. Watch our crank R&D and inspection process. A Warranty on Engine Internals? Yes! Wiseco is committed to providing performance and reliability in all their products. This is why Garage Buddy kits come with a limited warranty. Rebuild your engine with a Garage Buddy kit, and your new Wiseco components are covered against manufacturer defects for 90 days from the date of purchase, or 10 hours logged on the hour meter, whichever comes first. Check out all the warranty details on the detail sheet in your new Garage Buddy kit. Open up your Garage Buddy kit and you'll find a detail sheet on the warranty on your new components. Forged Pistons The top end kits included in Garage Buddy kits feature a Wiseco forged piston, which are designed, forged, and machined completely in-house in the U.S.A. Four-stroke Garage Buddy kits come with a Wiseco standard forged piston, which offers stock compression and more reliability and longevity, thanks to the benefits of the forging process. Two-stroke Garage Buddy kits include a Wiseco Pro-Lite forged piston, which is the two-stroke piston that has been providing two-stroke riders quality and reliability for decades. Some applications, two and four-stroke, even feature ArmorGlide skirt coating, reducing friction and wear for the life of the piston. Forged aluminum has an undeniable advantage in strength over cast pistons, thanks to the high tensile strength qualities of aluminum with aligned grain flow. Read more about our forging process here, and get all the details on our coatings here. All Wiseco pistons are forged in-house from aluminum. Some pistons may also come with ArmorGlide skirt coating, and some 2-stroke pistons may already have exhaust bridge lubrication holes pre-drilled. All pistons are machined on state-of-the-art CNC machine equipment, then hand finished and inspected for quality. The forged pistons come complete with wrist pin, clips, and high-performance ring(s). Lastly, all gaskets and seals are made by OEM quality manufactures. Sealing components are not something to ever go cheap on, because no matter how high-quality your moving components are, if your engine is not sealing properly, it’s coming back apart. Need some tips on breaking in your fresh engine? Check this out. Gaskets and seals provided in Wiseco Garage Buddy kits are OEM quality, ensuring your freshly rebuilt engine is properly sealed.
  20. We have a used 2006 YZ450F that we're rebuilding step-by-step, and documenting along the way. In this part 1 feature, we'll go over how to replace a 4-stroke piston. Click here to watch the quick tip video to go along with it! The top end in a four-stroke can be split up into two major sections: the head, and the cylinder and piston. They both require specific attention and critical steps to ensure proper opertation once everything is back together. We replaced the worn stock piston with an OEM quality forged ProX piston kit. It includes the rings, wrist pin, circlips, and installation instructions. The pistons are available in A, B, and C sizes, to accomodate for the size of your cylinder as it wears. Our new ProX forged piston compared to the stock, used piston. Carbon deposits on the crown are common after running hours, but can decrease power and efficiency. Disassembly To prepare to disassemble your head and cylinder, you'll need to remove the seat, gas tank, exhaust system, and carburetor (or throttle body). While not always required, removing the sub-frame, shock, and air boot make accessibility to the engine a lot easier in most cases. Once those major components are removed, you'll need to remove any other components attached to the head or cylinder, such as clutch cable guides, spark plug boots, and electrical connections. Removing the subframe, airboot, and shock, in addition to the other components, provides much better access to all sides of the motor. Don't forget to remove any cable guides or other items bolted to the head/cylinder. Next, remove the cam cover, loosening the bolts incrementally until they are all loose. With that off, it is best to make sure your camshafts are not fully compressing any of the valve springs before you loosen the cam caps. You can do this by slowly rotating the crankshaft via the kickstarter. With the cam caps removed, loosen and remove the cam chain tensioner next. This will give you the slack to remove the timing chain completely. You can now lift the camshafts completely out, handling carefully. Now you can loosen the head bolts in incrementally in a crossing pattern. Remove the head and place it aside, handling it carefully. Next, do the same for the cylinder bolts, and carefully remove the cylinder. As you remove the cylinder, the piston is going to stay on the connecting rod, so it helps to hold the connecting rod steady as you wiggle the cylinder off the piston. It is always a good idea to fill the opening of the cases with a lint free rag to prevent debris or loose parts from falling in. Remove the cam cover and head bolts incrementally until loose. This prevents the chance of warping. Finally, you can remove one wire lock from the stock piston using a pick or small screwdriver. Slide the wrist pin out, and remove the piston from the small end of the connecting rod. Be very careful no to drop anything into the cases during this step, and throughout the entire process. Cleaning With everyting removed, you'll need to clean any old gasket material and other residue off your sealing surfaces. This includes the base for the cylinder on the cases, top and bottom surfaces of the cylinder itself, and the bottom surface of the head that seals to the cylinder. For large or difficult pieces of material, it is common to use a razor blade for removal. However, be gentle and careful not to put deep grooves or scratches in the surfaces. Also, don't cut your finger open, or off. Scrape old gasket material off carefully, being cautious of any grooves or scratches in sealing surfaces and personal injury. Final cleaning commonly consists of using carb cleaner, or a similar chemical cleaner, and a rag to achieve completely clean and flat surfaces. Cylinder Prep Before you go and put that cylinder back in with your new piston, you'll want to inspect it for signs of wear, and measure it to make sure it's within spec (refer to your owner's manual for proper specifications). If there is minimal glazing on the cylinder, no grooves worn in, and it's within spec, you should be ready to reinstall after a good honing. Always use a diamond tipped honing brush for resurfacing work. If you're unsure about performing any cylinder prep work yourself, talk to your local dealer about cylinder shops, where any prep work required can be performed. ProX pistons are available in multiple sizes to accomodate for cylinder wear, so be sure your bore measurements correlate with the size of piston you're installing. Make sure your cylinder is the correct bore size for your piston, and properly cleaned and honed, as pictured here. Reassembly When you have your cylinder prepped and ready, now is a good time to double check your piston-to-wall clearance and ring end gap. For piston-to-wall, measure the size of your ProX piston using a micrometer only. Measure the piston on the skirt, 90 degrees from the wrist pin bore, at the point on the skirt that is 1/4 of height of the piston from the bottom. Refer to your manual for acceptable piston-to-wall clearance range. When measuring ring end gap, install the top ring and second ring (seperately, and if applicable) approximately 1/4" into the bore. Use a feeler gauge to be sure ring end gap is within the dimensions specified in your piston kit instructions. ProX rings are pre-gapped, but it is always good practice to double check. While ProX rings are pre-gapped, it's still a good idea to double check your ring end gap. Install the rings in the proper order and location on your pistons. Refer to the instructions that come with ProX piston kits to be sure you are installing the rings in the correct fashion and location. After this, install one wire lock into your piston, being sure it is properly seated. Click here for our tips on installing wire locks. Use your finger to put a layer of motor oil on the cylinder wall. Next, put a layer of oil on the outside of your new piston (on the outside of the rings, on the ring belt, and on the skirts). You don't want your new piston and rings breaking in under dry conditions. Use the normal motor oil you use in your 4-stroke. Piston installation can be done via more than one method, but in our case, we installed the piston in the cylinder before attaching it to the connecting rod. Either way, be sure your piston is facing the correct direction, meaning the exhaust valve reliefs line up with the exhaust side of the head. There will be markings on the crown of ProX pistons to indiciate which side is the exhaust side. Also, make sure your rings remain in the proper location as you slide the piston into the cylinder. The arrow shows the marking on the piston crown that indicates that is the side of piston that needs to face the exhaust. Before installing the new base gasket, piston and re-installing the cylinder, make sure the surface is clean and the crankcase is free of debris. While the top end is off, this could also be a good time to make sure your crankshaft is in spec. Next, lay your new base gasket on the cases, lining it up properly. Install the piston (which should remain in the cylinder) onto the connecting rod by lining up the pin bore with the small end bore, and sliding your new wrist pin (put a layer of oil on this before installing) completely through, until it stops against the one wire lock previosuly installed. With the piston secured to the connecting rod via the wrist pin, install your remaining wire lock, and make sure it is properly seated. You can now slide the cylinder all the way down to meet the cases. Note: Make sure you take any rags out of the cases before reassembling! You're now at the point in reassembly where you will install your rebuilt head (details in part 2 of this top end rebuild soon to come) with the proper head gasket, and re-install all the items previously removed. Be sure you are following all proper torque specs specified in your manual. Head back for part 2 of the the top end rebuild, where we'll show you some great tips on assembling a four-stroke head with new valves and valve springs, re-installing camshaft(s) and timing chain, and checking and adjusting valve clearance. Our new ProX piston and freshened up clyinder successfully installed. Note the dot on the piston crown, indicating that is the exhaust side. Stay tuned, more rebuild tips to come!
  21. Bike is up-jetted to correct jetting, air filter is fairly clean, bike has only got 1200 miles since its most recent top end rebuild recommended is every 6000 miles on this 125 2 stroke road bike, top end was done at garage, always warmed up and ridden nicely. seems to have deep to severe scratches on the piston and cylinder bit, seems to be where the exhaust port is and on that general side. could do with some help on understanding the possible issue so i can stop it from happening again.
  22. Hey guys, I'm super new to this forum. for starters i'm 6 foot 5, skinny, 15 years old and getting into bikes now. my dad used to ride bikes in his prime (he always talks about his glory days when he rode his old yz490 with his friends). i just picked up a 1982 yz125j for 1000 cad. it runs with gas in the cylinder. the bike is odd because the frame is perfect, the front forks aren't chewed up(obviously hasn't been mx raced). the engine runs, no clicks, it just smokes a bit much but I think that that's because i mixed it roughly 40:1 and its vintage. the only issue with the bike is that everything but the engine is weird. the throttle cable is broken, the plastics have all different screws, almost like someone just picked up random bolts and used them instead of oem. the engine drain bolt was just a normal bolt that someone cut down(i put an o-ring around it as a short term fix just to stop it from leaking), the coolant is just water (no ethalyne glycol). I can patch up everything/get replacements but after spending countless hours scouring the internet and even going so far as to contact every local Yamaha/vintage dealer near me, the oldest engine gasket kit i can fin is 1992, not even in the 80's. currently the engine seems fine but i will be riding this thing pretty hard and will have to rebuild it at some point. Do any of you guys know how to obtain vintage mx gasket kits? or would I have to figure out the exact bearings and go to a bearing store and use gasket maker/rtv for the rest. anything helps guys. Thanks, H1rush.
  23. So I am about to buy a used yz85 from a guy who said that his kid rode it around the yard and stuff and never raced it. He said that he rebuilt the top and 15 hours ago. Should I look in to rebuilding the top and soon if I plan not ride it hard but to just ride in fields and the occasional trails or is this a waste of money for my riding style. Plus I am only going to have this bike for about a year and then sell it again so I don’t know if it is worth it. Any help would be appreciated.👍
  24. So I am about to rebuild the top end bottom end, rejet the carb, clean the air filter, and put a new spark plug in my ‘05 yz85. (Along with all new fluids obviously) is there anything special I should do before I ride the bike after I do all those things? Or should I just put my 32:1 in it and ride? I have heard about like heat cycle and break in period for new top ends but I have heard good and bad about them and I don’t know enough to make an opinion on it. Does anybody have any tips?
  25. I just bought a 2010 KTM 530 XC-W six days that has had the top end blown and small metal chunks in the engine from piston. You can see the holes in the piston where I think the valves went through. I am not really sure if that is what the holes are from though. The seller told me it blew up while idling after an oil change. I am trying to figure out what the best method is to attacking this monster. I know I can rebuild the top end by myself, but if there is scarring in the casing I am not sure to buy a whole new top end or take it to the shop to get it fixed instead. Also, I do not know how difficult taking the engine apart and trying to clean pieces of metal out is. I have plenty of time to work on the bike, but I am a poor college student looking for the cheapest route to getting my bike started hopefully next spring. Let me know your thoughts on how I should attack this. Some estimates I have received from shops have been in the $2500-$4500 range.
×
×
  • Create New...