Jump to content

Search the Community

Showing results for tags 'enginebuilding'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Dirt Bikes
    • General Dirt Bike Forums
    • Make / Model Specific
    • Dirt Bike Technical Forums
    • Special Interest Forums
    • Dirt Bike Regional Discussion
  • General
    • General Forums
  • ATV / UTV
    • General ATV / UTV Forums
    • Make/Model Specific
    • ATV / UTV Regional Discussion
  • Inside TT
    • Advertise
    • Community Sponsors
    • Site Usage & Functions
    • Bug Reports & Suggestions
  • ThumperTalk Clubs FAQ & Help's FAQ/Help & Discussion
  • RokFox's Current Kit
  • RokFox's What's New
  • So Cal Flattrack's Club Forum
  • Pittsburgh Area Off-Road N@'s Welcome!
  • Walker Valley Single Track Riders's Club Forum
  • Thumperjunkies - Ottawa & Eastern Ontario Riders's Discussion
  • Jersey MX and offroad's Places you ride
  • Jersey MX and offroad's Discussion
  • Sonoma Coast Skinny Twisties's Discussion
  • Sonoma Coast Skinny Twisties's Topics
  • New Mexico Trail Riders's Discussion
  • Okanagan Off Road Motocycle Club's Club Forum
  • Redwood Riders's Club Forum
  • jack graybill's Club Photos
  • TAS trail/Enduro riders's Club Forum
  • The official Aussie 2 Stroke club's Favourite riding places

Categories

  • Universal Parts & Accessories
  • Parts & Acc. - Japanese Bikes
    • Honda Parts & Accessories
    • Kawasaki Parts & Accessories
    • Suzuki Parts & Accessories
    • Yamaha Parts & Accessories
  • Parts & Acc. - Euro Bikes
    • Beta Parts & Accessories
    • Husqvarna Parts & Accessories
    • KTM Parts & Accessories
    • Other Euro Parts & Accessories
  • Motorcycles
    • Off-Road Motorcycles
    • Dual Sport Motorcycles
    • Street Motorcycles
  • Powersports Gear & Apparel

Products Categories

Vehicles Categories

Garages

Blogs

There are no results to display.

There are no results to display.

Calendars

  • ThumperTalk Clubs FAQ & Help's Club Calendar
  • RokFox's Enduro Ride Schedule
  • So Cal Flattrack's Club Calendar
  • So Cal Flattrack's Events
  • Walker Valley Single Track Riders's Club Calendar
  • Thumperjunkies - Ottawa & Eastern Ontario Riders's Club Calendar
  • Thumperjunkies - Ottawa & Eastern Ontario Riders's Events
  • Sonoma Coast Skinny Twisties's Calendar
  • New Mexico Trail Riders's Events
  • Okanagan Off Road Motocycle Club's Club Calendar
  • Redwood Riders's Club Calendar
  • jack graybill's Club Calendar
  • TAS trail/Enduro riders's Club Calendar

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


AIM


MSN


Website URL


ICQ


Yahoo


Jabber


Skype


Interests

Found 6 results

  1. In today's post, I'm very excited to share details about my new book,The Two Stroke Dirt Bike Engine Building Handbook. As with all of my blogs and technical resources, my goal has been to bring riders clear and concise technical information. My two-stroke book exemplifies this and puts nearly 300 pages of engine building knowledge at your fingertips. I wroteThe Two Stroke Dirt Bike Engine Building Handbook to be an all-encompassing guide on engine building. From the moment there is doubt about the engine's overall condition to the time the rebuilt engine is broken in, I give you a step-by-step guide to help you work towards a successful build. My aim was to create a definitive resource that hit on all the relevant topics you'll encounter as you proceed through an engine build and take any guesswork out of the equation. Throughout the book, engineering knowledge and practical experience are fused together to detail the how and why behind the way procedures are performed, parts are designed, and engine performance is affected. This is the most important and valuable aspect of the book, and it's something you won't find in a service manual. The book doesn't just tell you to bolt part A to part B, it teaches and explains the correct way assembly procedures should be performed and why it is necessary to do so. It also explains the intricate relationship between parts, where to look for wear patterns, and shows examples of worn and damaged components. If you're interested in making modifications to your engine or if you're curious about how certain modifications affect performance, I wrote an entire chapter dedicated to the subject. Within this chapter a discussion on how performance parts such as expansion chambers, port timing modifications, and cylinder heads alter overall engine performance is included and helpful suggestions are provided to aid you in choosing the correct components for your build, depending on your specific riding needs. If you have a thirst to learn more about how your engine works and a desire to correctly disassemble or assemble an engine to professional standards, you will benefit greatly from this book. Whether a complete beginner or a seasoned builder, with nearly 300 pages and 250 images worth of information, there is fresh and useful knowledge for everyone. There is also valuable material packed into this handbook that doesn't just pertain to the act of building the engine. I include instruction on diagnosing engine problems, sourcing and determining which parts to replace, using precision measuring tools, setting up your workshop, and additional tests and inspections that should be performed when preparing racing engines. If you just want to build your engine back up to stock spec, you are covered. If you want to go the extra mile and prepare a racing engine, you are also covered. In a way, this book allows you to choose your own ending by giving you all the tools and knowledge you need to complete your build at whatever level you decide. As a way to thank you for your support, we're offering TT members 15% off during a special TT pre-sale which runs from now until December 5th (when the book officially launches). Simply follow this link to learn more and order: ThumperTalk Pre-Sale Thanks again for all your support as we've grown DIY Moto Fix from an idea to a thriving community of riders who are passionate about making their machines perform better through their own hard work. Thanks for reading and have a great week. -Paul
  2. Paul Olesen

    How The Two-Stroke Exhaust System Works

    In my last post, I shared details about how the two-stroke cylinder works, in today's post I want to provide an overview of how a performance two-stroke engine's exhaust system works. Adding a performance exhaust system can be a great way to increase power and/or alter the power delivery of an engine. I would also argue that optimizing a two-stroke engine’s exhaust system is equally as important as ensuring the cylinder’s ports are correctly designed for the given application. Not all exhaust systems are designed to do the same things, and much like cylinder port design, exhaust designs are intended to alter power in specific ways. Having a basic understanding of how an exhaust system works can go a long way when it comes to selecting the right exhaust pipe for your engine. Two-stroke exhaust design is complicated and there are many different variables that must be considered when designing a pipe. I don’t intend to go into all of them, but I will share a few of the most critical. Each time the exhaust port opens to release spent combustion gases, pressure pulses are created. Modern pipe designs harness this pulse energy and use it to help scavenge and fill the cylinder. The process starts when a positive pressure pulse is created once the exhaust port opens and combustion gases leave the cylinder. The positive pulse travels down the pipe until it reaches the diffuser, at which point part of the pulse is inverted and reflected back towards the cylinder as a negative wave. This negative wave is very beneficial in pulling spent exhaust gases out of the cylinder and fresh mixture up through the transfer ports. The remaining positive pulse continues on its journey towards the end of the pipe where it encounters the reflector. The reflector acts as the name implies and forces the positive pulse back towards the exhaust port. Once reflected back, the pulse remains positive and, if the pipe is designed correctly, will reach the exhaust port just as the piston is about to close off the port on the compression stroke at the desired RPM for maximum power. Any fresh mixture which has escaped out the cylinder will be forced back in by the positive pressure pulse. The tuned length of the pipe is dictated by the exhaust port timing, RPM of max power, and the speed of sound. Pulse length and amplitude are governed by the angles of the diffuser and reflector. Generally, steeper cone angles create pulses with more amplitude but shorter duration. Shallower angles generate pulses with less amplitude but longer duration. Given these variables, it is easy to see how a pipe could be tailored for specific applications. An engine converted for road racing may utilize a pipe designed for peak power which incorporates steep diffuser and reflector cone angles so that pulse amplitude is not sacrificed. This peak power would likely come at the expense of a narrowed range of power. An engine tailored for woods riding may feature a pipe with shallower cone angles, resulting in less pulse amplitude, but a broader spread of power. The last parameter I want to touch on is how the tailpipe, which is sometimes referred to as the stinger, influences the pipe. The tailpipe creates a flow restriction in the pipe which allows the pipe to have a certain amount of back pressure. Enlarge the tailpipe and the back pressure decreases, make it smaller and the back pressure increases. As back pressure increases or decreases, so does temperature and ultimately the speed of sound. As the speed of sound changes, so does the resonance RPM of the pipe. If the tailpipe is sized too small, cylinder scavenging will be inhibited. When this happens, the cylinder, fresh mixture, and piston will all be overheated. While engineers and tuners can estimate starting pipe dimensions and tuned lengths, a great deal of trial and error testing is usually still necessary to fine tune the exhaust pipe and optimize the design. Unless you intend on building your own exhausts, this work will have already been done for you. When selecting an exhaust system, you need to focus on how the exhaust alters the power curve. Exhaust systems are tailored to deliver more bottom end performance, top-end performance, or performance throughout the power curve. Selecting which system is right for you will depend on how you want your engine to perform. If you’ve chosen to modify your cylinder ports, installing an exhaust system that compliments the porting can be very beneficial. You might be wondering about slip-on mufflers. If you’ve followed along with my explanation of how exhaust pipes work, you’ll notice I made no mention of the muffler. While the muffler can have a small effect on performance, it is not the primary factor. Upgrading a muffler is a good way to reduce weight, but there won’t be a slip-on out there which significantly increases power, in the same way, a properly designed expansion chamber can. I hope you enjoyed this write-up on key features affecting the performance of two-stroke cylinders. As for Two Stroke Handbook news, we received our first printed proof of the book this week! Needless to say, we are inching closer and closer to an official release date. To stay updated on The Two Stroke Dirt Bike Engine Building Handbook we created an email sign up for our readers. Click this link to sign up, see the new cover, the Table of Contents, and some sneak peek pages right from the book. Thanks for reading and have a great rest of your week! -Paul
  3. Paul Olesen

    Checking and Setting Cam Timing

    Today I'm going to cover how to check and set cam timing, which is something you can do if you have adjustable cam gears in your engine. This is a procedure often performed by race engine builders to ensure the valvetrain performs just as they intend, and ultimately so that they extract the desired performance out of the engine. Adjustable cam gears typically aren't a stock option but are abundantly available in the aftermarket. The following text is exerted from my book, The Four Stroke Dirt Bike Engine Building Handbook, so if you find this info valuable please take a look at the entire book. Degreeing the camshafts is the process of checking, and if necessary altering, the cam timing so that the timing is set perfectly to specified timing values. On stock and performance engines, cam timing can be off slightly due to manufacturing variations in parts such as the camshafts, cam gears, cam chain, cylinder, cylinder head, crankshaft, crankcase, and gaskets. With so many parts having an influence on cam timing, it is necessary to adjust and correct the timing so it coincides precisely with the desired timing values. The biggest factor determining how the camshafts must be timed is whether the cam lobes are symmetrical or asymmetrical. Camshaft lobes that are symmetrical have opening and closing ramps that share the same profile. Asymmetrical cam lobes have opening and closing ramps with different profiles. Symmetric and asymmetric camshafts are timed differently. First we will focus on the timing of symmetrical camshafts. Symmetric camshafts are timed most accurately by determining the position of the camshaft’s lobe center in relation to crankshaft position. A camshaft’s lobe center is where peak lift occurs, which is the most important timing event of the camshaft. Since the tip of the camshaft is rounded, it would be difficult to determine the lobe center by taking a direct measurement of peak valve lift. The opening and closing points of the camshaft are also of little use because the cam opens and closes gradually. This makes it difficult to determine the precise position in which the camshaft opens or closes the valves. The lobe center position is a calculated value based on the position of the camshaft at two specific points of valve lift, typically with valve clearances set to zero. Normally the position of the camshaft is recorded at 0.050” (1.27mm) of lift as the valve opens and 0.050” (1.27mm) of lift when the valve closes. By recording the position of the camshaft at a specific valve lifts, the cam lobe is on a predictable portion of the opening and closing ramps. The center of the cam lobe is exactly in the middle of these two measurements. To calculate the lobe center of a symmetrical cam lobe you will need to do the following: 1. Add the measured opening and closing timings together 2. Add 180 degrees to the sum 3. Divide the answer by 2 4. Subtract the smaller value of the two opening and closing numbers from the answer to reach the lobe center value. Once the actual lobe center value has been determined on the engine, it can be compared to the specified lobe center timing presented by the manufacturer, aftermarket cam supplier, or the engine tuner. If the measured lobe center position coincides with the targeted position, all the work is done. If not, the cam gear will need to be adjusted so the timing is corrected. If you are checking the timing on stock cams and lobe center information isn't presented, you will need to determine the lobe centers the manufacturer recommends. To do this, the opening and closing timing information supplied in the service manual can be used. Aftermarket camshafts should come with a timing card full of useful information to set the cams correctly if they are adjustable, otherwise the lobe centerline can be calculated if the opening and closing timings are known. If you don’t like math, there are plenty of lobe center calculators available on the internet you can use. For the Kawasaki KX250F engine with the stock camshafts, the timing information is as follows: Intake Opens 40° BTDC (Before Top Dead Center) Intake Closes 72° ATDC (After Top Dead Center) Intake Lobe Center = ((40 + 72 + 180) ÷ 2) - 40 = 106° My calculated lobe center timing is 106°. When I check the cam timing, this will be the value the real engine hopefully yields. The lobe center for the exhaust cam can be found the same way. For the KX250F exhaust cam: Exhaust Opens 69° BBDC (Before Bottom Dead Center) Exhaust Closes 49° ATDC (After Top Dead Center) Exhaust Lobe Center = ((69 + 49 + 180) ÷ 2) - 49 = 100° Something not obvious I want to touch on is that if the intake opens after top dead center, a negative value for the opening should be used. If the exhaust closes before top dead center, a negative value should be used here as well. To start the process of checking the timing the valve clearances should be set to zero. Thicker shims can be used and zero clearance can be confirmed with a lash gauge. A degree wheel and pointer will need to be installed on the engine. There are many ways of attaching these items and each engine will provide its own challenges. Here I’ve left the flywheel on and installed a couple washers behind the degree wheel to space the degree wheel from the flywheel. Then the flywheel nut is used to secure the degree wheel. The pointer can be made from welding rod, a coat hanger, or anything else you can find. I’ll be finding TDC with the cylinder head installed, so I used one of the exterior head bolts to secure the pointer. If you will be finding TDC with the head off, choose another location. Before the cams can be timed, TDC must be found. This can be done with the cylinder head on or off depending on the process you use. The piston dwells a few degrees at TDC so more accuracy than zeroing the degree wheel to the piston’s highest position is necessary. Similar to finding the cam lobe center, TDC can be found by measuring equal distances on the piston’s up and down stroke and then confirming that the degree wheel timing is equal on both sides at the measured distances. Dial indicators or piston stoppers are commonly used to do this. HOT TIP: Piston stoppers can easily be made by removing the center section of a spark plug and then tapping a suitably sized threaded hole in the remaining part of the plug so a bolt and lock nut can be installed. The stopper can then be easily threaded into the spark plug hole. Whichever method of finding TDC you decide to use, start by moving the crankshaft to the approximate TDC position. Then without rotating the crankshaft move the degree wheel so that TDC on the wheel coincides with the pointer. Next, set up your piston stops or measure piston travel on both sides of TDC. In this example I’m using a dial indicator which extends through the spark plug hole down into the cylinder. I’ve decided to take measurements at 0.050” (1.27mm) of piston travel before and after TDC. At each measurement point the number of degrees indicated on the degree wheel before and after TDC should be the same if I have found true TDC. If the degree wheel values don’t read the same before and after TDC determine which way the wheel must be rotated so that the values become equal. Then carefully rotate the degree wheel without rotating the crankshaft to alter the degree wheel’s position. Once altered, recheck and confirm that true TDC has been found. This can be a tedious process but is extremely important for checking cam timing accurately. Repeat the procedure for checking TDC 3 - 5 times to ensure repeatability and accuracy. After true TDC has been found, be extremely careful not to inadvertently move the degree wheel or pointer. Do not rotate the crankshaft using the nut securing the degree wheel to the crankshaft. Instead, use the primary drive gear nut or bolt to rotate the engine over. Next, set up a dial indicator on the intake or exhaust lifter bucket, depending on which camshaft you are checking. You’ll have to use some ingenuity here in determining the best way to secure the dial indicator to the engine. I’ve used a flat piece of steel and secured it to the cam cap using the cylinder head cover holes. Make sure the indicator travels as parallel to the path of valve travel as possible for accurate readings. Also makes sure at least 0.060” (1.52mm) of travel from the indicator’s resting position is possible so adequate valve lift can be measured. Once the indicator has been set up, the cam timing can be checked. Whenever checking timing only rotate the engine over in the direction of engine rotation. Reversing engine rotation will result in inaccurate measurements due to the reversal of gear meshes and chain slack. If you miss a measurement point, rotate the engine over until you get back to the previous position. Slowly rotate the engine over until 0.050” (1.27mm) of valve lift has occurred. Then record the position of the degree wheel. Next, rotate the engine until the cam begins to close the valve. Once only 0.050” of indicated valve lift remains record the position of the degree wheel. Repeat this process of checking opening and closing positions 3 - 5 times to check for repeatability before calculating the cam lobe center. Once you are confident in your measurements proceed to calculate the cam lobe center. On the KX250F engine my intake lobe center is as follows: Measured Intake Open (0.050” Lift) 39 ° BTDC Measured Intake Closure (0.050” Lift) 74 ° ABDC Intake Lobe Center = (( 39 + 74 + 180 ) ÷ 2 ) - 39 = 107.5° On my stock KX250F engine the actual lobe center is 107.5°. At this point if I had adjustable cam gears, I could rotate the gear slightly so that the lobe center corresponded to the specified lobe center value. The same procedure is followed for checking and adjusting the exhaust cam timing. Remember if mistakes are made when setting cam timing big problems can result, so it is best to be very patient and focused when performing this task. Always check your work 3 - 5 times to make sure the timing is repeatable and making sense. When tightening adjustable cam sprockets, use a locking agent and be sure to torque the bolts to their specified values. When working with single camshafts that have both the intake and exhaust lobes ground on them, focus your efforts on achieving correct intake timing. Correctly setting intake timing is more important since it has a larger effect on power. The intake valves also have higher lift than the exhaust valves, potentially creating clearance troubles between the piston and valve if the intake valves are mistimed. With your new fangled ability to adjust cam timing, you may be wondering what happens if you advance or retard the intake and exhaust cams from their standard positions? The lobe separation angle refers to the number of degrees which separate the lobe center of the intake lobe from the lobe center of the exhaust camshaft. The lobe separation angle can be calculated using the following formula: LSA = (Intake Centerline + Exhaust Centerline) ÷ 2 As a rule of thumb, reducing the lobe separation angle by advancing the intake and retarding the exhaust camshaft will increase valve overlap, move power further up the power curve, increase cylinder pressure, increase the chance of detonation, and reduce the piston to valve clearances. On the contrary, increasing the lobe separation angle by retarding the intake cam and advancing the exhaust cam will have somewhat of the opposite effect. There will be less valve overlap, power will move to a lower RPM, chances of detonation will be reduced, and the valve to piston clearances will increase. The likelihood of finding more or better power by advancing or retarding the camshafts is not all that likely because manufacturers, tuners, and aftermarket companies already test specific combinations of cam timings to death. In addition, if the lobe separation angle is reduced, the piston to valve clearances should be checked to ensure they are adequate. My advice is to run the prescribed cam timings to reduce the chance of problems occurring. Asymmetric camshaft timing can be set in a similar fashion to symmetric camshafts, however instead of focusing on the lobe center position, the specific opening and closing points will need to be measured. Timing cards supplied with asymmetric cams should have specific instructions for setting timing, but normally valve clearance is set to zero and cam positions are recorded at specific lift heights. Based on the measured opening and closing positions, adjustments are made to the timing until the timing matches the specified values. I hope you enjoyed this exert on checking and adjusting cam timing. As always feedback is appreciated so please leave comments below. If you're interested in more engine building info check out my book The Four Stroke Dirt Bike Engine Building Handbook. Right now we are having a 4th of July Sale where everything on our site is 20% off with the discount code fourthofjuly2017. Just be sure to enter the code upon checkout so you receive your 20% off! So if you've had your eye on our Four Stroke Dirt Bike Engine Building Handbook or even our Value Pack, but haven't pulled the trigger yet - go for it! Availabe at: DIYMotoFix.com - Paul
  4. Paul Olesen

    New and Re-plated Cylinder Prep

    Today I want to share some pointers on preparing new or re-plated cylinders that will help ensure your engines run stronger and last longer. Plus, I've got an update on the two-stroke book I've been working on that I'd like to share. Let's get started! A Universal Concern First, both new and re-plated cylinders must be cleaned prior to assembling. Normally the cylinders will arrive looking clean, but looks can be deceiving. I have no doubt that the factories and re-plating services clean the cylinders as part of their processes, but I highly recommend cleaning the bores a final time prior to use. Shown below is a new Yamaha cylinder that I extracted quite a bit of honing grit out of. If left in place, the honing grit will ensure that the piston rings will wear out faster than they need to, so be sure to take the time to properly clean new cylinders prior to assembly. What’s the best way to clean the cylinder bore? Start by using warm soapy water and a brush to clean the cylinder. Take your time and be thorough. After the majority of the honing grit has been removed switch to automatic transmission fluid and a lint free rag for one final cleaning. As a test to check cleanliness, rub a cotton swab against the cylinder bore. If the swab picks up any debris and changes color, your cleaning duties are not over. The swab should be able to be rubbed against the bore and remain perfectly clean. Two-Stroke Port Dressing For two-stroke owners, the second item I want to bring to your attention is port dressing. Port dressing is a term used to describe the process of deburring/breaking the edge at the intersection of the cylinder plating and the ports in the cylinder. During the plating process, plating usually builds up excessively at the edge of the port and must be removed after honing. Proper removal is critical to ensure acceptable piston ring life. Manufacturers and plating services will break the edge in different ways and to different magnitudes, which ends up being a whole other topic. The important thing is to ensure that any new or re-plated cylinder you use shows visible signs that the port edges have been dressed. A dressed port edge will be easy to spot because it will feature a different surface finish than the cross-hatch created from honing. This is easily visible in the image shown above. Many port dressing operations are done manually so some irregularity in the geometry will usually be present. If there is no visible edge break on the port edges, I would be highly suspicious and contact the service that plated the cylinder or sold the cylinder and confirm with them if a step was missed. Typically a chamfer or radius in the .020 - .040” (0.5 - 1mm) range is used. Two-Stroke Power Valves Lastly, it is possible that some of the power valve components, such as blades or drums, will not fit correctly on cylinders that have been replated. This is because the plating can occasionally build up in the slots or bores where the power valve parts reside. Prior to final assembly, be sure to check the function of the power valve blade and/or drums to ensure they move freely in their respective locations within the cylinder. If plating has built up in a power valve slot or bore, it will need to be carefully removed. To do this, appropriately sized burs for die grinders or Dremel tools can be used. If one is not careful, irreversible damage to the slot or bore can result. When performing this work proceed cautiously or leave it to a seasoned professional. Burs for the job can be difficult to track down in stores, but are readily available online from places like McMaster-Carr. When purchasing burs, be sure to pick up a few variants, such as rounded and square edged, designed for removing hard materials. The Two-Stroke Book From February to March we photographed the entire book. From April onward we have been formatting and proofreading. Needless to say, we are in the final stretch! If you want to stay updated on the moment the Two-Stroke Dirt Bike Engine Building Handbook is ready for pre-order, sign up at the link below. We can't wait to get this book out the door and into your garage. Sign Up for Updates on the Two-Stroke Book Thanks for reading and have a great rest of your week! -Paul
  5. Paul Olesen

    Four Stroke Cylinder Head Reconditioning

    It's time to open up a can of worms and talk about a hotly debated topic in the powersport community - four stroke cylinder head reconditioning best practices. I've perused the forums and had discussions with people about reconditioning four stroke cylinder heads and there appears to be a lot of mixed opinion and beliefs on what is right or wrong. I'm certainly not going to say my take on the subject is the only way, but I do want to share my opinion, explain the technical details, as well as touch on the machining process. The text below is out of my book, The Four Stroke Dirt Bike Engine Building Handbook, and details why cylinder heads should be reconditioned a certain way. Whenever new valves are installed in a cylinder head, it is best practice to recut the valve seats since the valves and seats are mated parts, otherwise the new valves are very susceptible to premature wear when run in the old seats. If a major overhaul is being performed, there is a good chance that enough seat wear will have occurred during the engine’s life that the valve seats will need to be recut before new valves are installed. This may be news to you, so I want to provide an explanation of why this is necessary. The term concentricity is used to describe the relationship between the axis of two circular objects. When two objects are perfectly concentric, their axis match up precisely with one another. In the case of the cylinder head, the valve guide axis and the valve seat axis must be as close to perfectly concentric as possible and parallel to one another. Usually, guide to seat concentricity is kept around 0.001” (0.025mm) or even less for racing applications. This is achieved by the factory by using a manufacturing process where the valve guides are reamed first. Then the freshly reamed valve guide bore is used to center the valve seat cutter. Once centered, the valve seat is cut. This process is then repeated for all the valves and results in very good concentricity between the valve guides and valve seats. As the engine is run, the valve guides, valve seats, and valve faces will wear. The valve guides will wear from front to back in an oval shape at the top and bottom of the guides. In a cross sectioned view the valve guide will take on an hourglass shape. The guide will become oval as a result of thrust forces stemming from the way the camshaft contacts the lifter bucket or rocker arm. These forces are transmitted to the valves and cause the valves to thrust against the sides of the guides, eventually causing the guides to become oval shaped. Once the guides start to become oval shaped, the valve faces will no longer be as concentric to the valve seats as they originally were. When this happens the valves will start to slide against the seats, causing the seats and valve faces to wear. The valve seats will eventually become out of round and the sealing between the valve face and seat will suffer. Installing new valves into oval shaped guides and out of round seats will ensure that the new valves wear out very quickly! To ensure the new valves being installed last as long as possible, the cylinder head’s seats and guides must be reconditioned once they are worn out. Complete cylinder head replacement is always an option, but I want to focus on freshening up the original head which is usually a more economical option, but comes with many more variables surrounding the quality of the job. There are numerous services offered in the marketplace for valve seat cutting, however, not all valve seat cutting methods are equal in terms of quality. There are hand operated seat cutters, dedicated seat cutting machines, and a few other options to choose from. Selecting the correct seat cutting process and entrusting the work to a competent engine builder is very important. The valve seat cutting process should mimic the OEM process as closely as possible. A concentric valve seat will never be able to be cut without first servicing the valve guides. If the valve guides are out of round then they will either be reamed to a slightly larger size if they are not too oval in shape or they will be replaced. Once any issues with the valve guides are addressed and they are perfectly round from top to bottom, it will be possible to cut the valve seat. Ensuring the valve guide is perfectly round is extremely important since the valve seat cutter is centered off of the valve guide bore. Cutting the valve seat concentrically to the guide requires a combination of skill and using modern machinery. The best valve seat cutting equipment in the world is worthless without a good experienced operator running it. There are two main factors which make cutting a seat concentric to the valve guide difficult. To start with, the valve seat cutter uses a pilot which locates in the valve guide. Since the valve stems are very small in diameter the pilots used to guide the seat cutters are also very small in diameter. A small diameter pilot shaft that centers the cutting tool can flex easily, which presents a real problem when cutting the seats. The next issue that arises when reconditioning seats is that often times the cutting tool will try to follow the path of the old valve seat which can make it hard to cut a concentric seat. Couple these factors together with slop within the machine, setup error, and operator error and you can see how quickly things can come out of alignment and you can end up with a poorly cut seat. In addition to seat concentricity, the depth the seat is cut to will influence valve spring pressure, shim sizes, and the compression ratio of the engine. All three of these variables will be reduced the deeper the seat is cut, which is not a good thing. The surface finish of the seat itself will influence how well the valve seals. A seat with chatter marks or other machining blemishes will not seal as effectively as a smooth seat. The valve seat width and the contact point between the seat and the valve face are also very important. Due to the complexities involved with cutting valve seats on modern four-stroke dirt bike engines, the job should not be left up to just anybody. There are numerous businesses which specialize in valve seat cutting which have both the right equipment and expertise to do the job correctly. I highly recommend spending some time researching and finding a reputable cylinder head machining company when it comes time to recondition your head. If the cylinder head must be shipped off in order to do business with a reputable company, the additional wait will be worthwhile. If you found this information helpful and would like more technical info on maintaining your four stroke engine, check out my book, The Four Stroke Dirt Bike Engine Building Handbook. Thanks for reading and happy wrenching! As always if you have comments or want to share your thoughts please leave a note below. -Paul Available at: - Amazon - Moto Fix Website
  6. Paul Olesen

    DIY Piston Ring Compressor

    Today I want to share a quick tip with those of you who are working on your own engines but just can’t justify buying a set of piston ring compressors. It’s entirely possible to make a perfectly good ring compressor from materials you can get at the hardware store. All you need is some plumber’s pipe hanging tape and a hose clamp that is sized according to your cylinder bore. To construct a DIY ring compressor from plumber's pipe hanger tape you will need to determine the length of tape required. This is easily done using the following equation for calculating the circumference of a circle. Length of Tape Required = Piston Diameter x π (Pi) When the tape is wrapped around the piston tightly, the final length may need to be reduced slightly so that the ends don’t butt together. Once the tape has been cut to length, make sure whichever side of the tape will be contacting the rings is smooth and free of little plastic burrs that could catch the rings. Simply lube up the tape, tighten down the hose clamp, and you are in business. Do you have a tip that makes compressing rings easier or cheaper? If so, leave a comment below! - Paul If you enjoyed this tip and want access to more like it, check out my book, The Four Stroke Dirt Bike Engine Building Handbook. On the fence about the book? Check out what other riders are saying: Thumper Talk Review Available at: Amazon.com DIYMotoFix.com
×